Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr1v0e Structured version   Visualization version   GIF version

Theorem lfuhgr1v0e 40480
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
lfuhgr1v0e.v 𝑉 = (Vtx‘𝐺)
lfuhgr1v0e.i 𝐼 = (iEdg‘𝐺)
lfuhgr1v0e.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}
Assertion
Ref Expression
lfuhgr1v0e ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐼(𝑥)

Proof of Theorem lfuhgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lfuhgr1v0e.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1) → 𝐼 = (iEdg‘𝐺))
31dmeqi 5247 . . . . . 6 dom 𝐼 = dom (iEdg‘𝐺)
43a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1) → dom 𝐼 = dom (iEdg‘𝐺))
5 lfuhgr1v0e.e . . . . . 6 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}
6 lfuhgr1v0e.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
7 fvex 6113 . . . . . . . . . 10 (Vtx‘𝐺) ∈ V
86, 7eqeltri 2684 . . . . . . . . 9 𝑉 ∈ V
9 hash1snb 13068 . . . . . . . . 9 (𝑉 ∈ V → ((#‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
108, 9ax-mp 5 . . . . . . . 8 ((#‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})
11 pweq 4111 . . . . . . . . . . . 12 (𝑉 = {𝑣} → 𝒫 𝑉 = 𝒫 {𝑣})
1211rabeqdv 3167 . . . . . . . . . . 11 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (#‘𝑥)})
13 2pos 10989 . . . . . . . . . . . . . . 15 0 < 2
14 0re 9919 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
15 2re 10967 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
1614, 15ltnlei 10037 . . . . . . . . . . . . . . 15 (0 < 2 ↔ ¬ 2 ≤ 0)
1713, 16mpbi 219 . . . . . . . . . . . . . 14 ¬ 2 ≤ 0
18 1lt2 11071 . . . . . . . . . . . . . . 15 1 < 2
19 1re 9918 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
2019, 15ltnlei 10037 . . . . . . . . . . . . . . 15 (1 < 2 ↔ ¬ 2 ≤ 1)
2118, 20mpbi 219 . . . . . . . . . . . . . 14 ¬ 2 ≤ 1
22 0ex 4718 . . . . . . . . . . . . . . 15 ∅ ∈ V
23 snex 4835 . . . . . . . . . . . . . . 15 {𝑣} ∈ V
24 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (#‘𝑥) = (#‘∅))
25 hash0 13019 . . . . . . . . . . . . . . . . . 18 (#‘∅) = 0
2624, 25syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (#‘𝑥) = 0)
2726breq2d 4595 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (2 ≤ (#‘𝑥) ↔ 2 ≤ 0))
2827notbid 307 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (¬ 2 ≤ (#‘𝑥) ↔ ¬ 2 ≤ 0))
29 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑣} → (#‘𝑥) = (#‘{𝑣}))
30 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
31 hashsng 13020 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (#‘{𝑣}) = 1)
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . 18 (#‘{𝑣}) = 1
3329, 32syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑣} → (#‘𝑥) = 1)
3433breq2d 4595 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑣} → (2 ≤ (#‘𝑥) ↔ 2 ≤ 1))
3534notbid 307 . . . . . . . . . . . . . . 15 (𝑥 = {𝑣} → (¬ 2 ≤ (#‘𝑥) ↔ ¬ 2 ≤ 1))
3622, 23, 28, 35ralpr 4185 . . . . . . . . . . . . . 14 (∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (#‘𝑥) ↔ (¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1))
3717, 21, 36mpbir2an 957 . . . . . . . . . . . . 13 𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (#‘𝑥)
38 pwsn 4366 . . . . . . . . . . . . . 14 𝒫 {𝑣} = {∅, {𝑣}}
3938raleqi 3119 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (#‘𝑥) ↔ ∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (#‘𝑥))
4037, 39mpbir 220 . . . . . . . . . . . 12 𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (#‘𝑥)
41 rabeq0 3911 . . . . . . . . . . . 12 ({𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (#‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (#‘𝑥))
4240, 41mpbir 220 . . . . . . . . . . 11 {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (#‘𝑥)} = ∅
4312, 42syl6eq 2660 . . . . . . . . . 10 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = ∅)
4443a1d 25 . . . . . . . . 9 (𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = ∅))
4544exlimiv 1845 . . . . . . . 8 (∃𝑣 𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = ∅))
4610, 45sylbi 206 . . . . . . 7 ((#‘𝑉) = 1 → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = ∅))
4746impcom 445 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1) → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = ∅)
485, 47syl5eq 2656 . . . . 5 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1) → 𝐸 = ∅)
492, 4, 48feq123d 5947 . . . 4 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1) → (𝐼:dom 𝐼𝐸 ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
5049biimp3a 1424 . . 3 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)
51 f00 6000 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
5251simplbi 475 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
5350, 52syl 17 . 2 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺) = ∅)
54 uhgriedg0edg0 25801 . . 3 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
55543ad2ant1 1075 . 2 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
5653, 55mpbird 246 1 ((𝐺 ∈ UHGraph ∧ (#‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  c0 3874  𝒫 cpw 4108  {csn 4125  {cpr 4127   class class class wbr 4583  dom cdm 5038  wf 5800  cfv 5804  0cc0 9815  1c1 9816   < clt 9953  cle 9954  2c2 10947  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722  Edgcedga 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-uhgr 25724  df-edga 25793
This theorem is referenced by:  usgr1vr  40481  vtxdlfuhgr1v  40694
  Copyright terms: Public domain W3C validator