Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version |
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 33451, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lflnegcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lflnegcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lflnegcl.i | ⊢ 𝐼 = (invg‘𝑅) |
lflnegcl.n | ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) |
lflnegcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lflnegcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lflnegcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lflnegl.p | ⊢ + = (+g‘𝑅) |
lflnegl.o | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lflnegl | ⊢ (𝜑 → (𝑁 ∘𝑓 + 𝐺) = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflnegcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | fvex 6113 | . . . 4 ⊢ (Base‘𝑊) ∈ V | |
3 | 1, 2 | eqeltri 2684 | . . 3 ⊢ 𝑉 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
5 | lflnegcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lflnegcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
7 | lflnegcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
8 | eqid 2610 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | lflnegcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
10 | 7, 8, 1, 9 | lflf 33368 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
11 | 5, 6, 10 | syl2anc 691 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
12 | lflnegl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
13 | fvex 6113 | . . . 4 ⊢ (0g‘𝑅) ∈ V | |
14 | 12, 13 | eqeltri 2684 | . . 3 ⊢ 0 ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
16 | lflnegcl.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
17 | 7 | lmodring 18694 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
18 | ringgrp 18375 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
19 | 5, 17, 18 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
20 | 8, 16, 19 | grpinvf1o 17308 | . . 3 ⊢ (𝜑 → 𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
21 | f1of 6050 | . . 3 ⊢ (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
23 | lflnegcl.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) | |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥)))) |
25 | lflnegl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
26 | 8, 25, 12, 16 | grplinv 17291 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
27 | 19, 26 | sylan 487 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
28 | 4, 11, 15, 22, 24, 27 | caofinvl 6822 | 1 ⊢ (𝜑 → (𝑁 ∘𝑓 + 𝐺) = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {csn 4125 ↦ cmpt 4643 × cxp 5036 ⟶wf 5800 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 ∘𝑓 cof 6793 Basecbs 15695 +gcplusg 15768 Scalarcsca 15771 0gc0g 15923 Grpcgrp 17245 invgcminusg 17246 Ringcrg 18370 LModclmod 18686 LFnlclfn 33362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-map 7746 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-ring 18372 df-lmod 18688 df-lfl 33363 |
This theorem is referenced by: ldualgrplem 33450 |
Copyright terms: Public domain | W3C validator |