Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim2N Structured version   Visualization version   GIF version

Theorem lfl1dim2N 33427
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 33426 may be more compatible with lspsn 18823. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim2N (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim2N
StepHypRef Expression
1 lfl1dim.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 18927 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
4 lfl1dim.d . . . . . . . . 9 𝐷 = (Scalar‘𝑊)
5 lfl1dim.k . . . . . . . . 9 𝐾 = (Base‘𝐷)
6 eqid 2610 . . . . . . . . 9 (0g𝐷) = (0g𝐷)
74, 5, 6lmod0cl 18712 . . . . . . . 8 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
83, 7syl 17 . . . . . . 7 (𝜑 → (0g𝐷) ∈ 𝐾)
98ad2antrr 758 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
10 simpr 476 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
11 lfl1dim.v . . . . . . . 8 𝑉 = (Base‘𝑊)
12 lfl1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
13 lfl1dim.t . . . . . . . 8 · = (.r𝐷)
143ad2antrr 758 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
15 lfl1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1615ad2antrr 758 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1711, 4, 12, 5, 13, 6, 14, 16lfl0sc 33387 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺𝑓 · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1810, 17eqtr4d 2647 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
19 sneq 4135 . . . . . . . . . 10 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2019xpeq2d 5063 . . . . . . . . 9 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2120oveq2d 6565 . . . . . . . 8 (𝑘 = (0g𝐷) → (𝐺𝑓 · (𝑉 × {𝑘})) = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
2221eqeq2d 2620 . . . . . . 7 (𝑘 = (0g𝐷) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) ↔ 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)}))))
2322rspcev 3282 . . . . . 6 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
249, 18, 23syl2anc 691 . . . . 5 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
2524a1d 25 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
268ad3antrrr 762 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
27 lfl1dim.l . . . . . . . . . 10 𝐿 = (LKer‘𝑊)
283ad3antrrr 762 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
29 simpllr 795 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
3011, 12, 27, 28, 29lkrssv 33401 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
313adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3215adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝐺𝐹)
334, 6, 11, 12, 27lkr0f 33399 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3431, 32, 33syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3534biimpar 501 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3635sseq1d 3595 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3736biimpa 500 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3830, 37eqssd 3585 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
394, 6, 11, 12, 27lkr0f 33399 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4028, 29, 39syl2anc 691 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4138, 40mpbid 221 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4215ad3antrrr 762 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4311, 4, 12, 5, 13, 6, 28, 42lfl0sc 33387 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺𝑓 · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4441, 43eqtr4d 2647 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
4526, 44, 23syl2anc 691 . . . . 5 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
4645ex 449 . . . 4 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
47 eqid 2610 . . . . . 6 (LSHyp‘𝑊) = (LSHyp‘𝑊)
481ad2antrr 758 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
4915ad2antrr 758 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
50 simprr 792 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5111, 4, 6, 47, 12, 27lkrshp 33410 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5248, 49, 50, 51syl3anc 1318 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
53 simplr 788 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
54 simprl 790 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5511, 4, 6, 47, 12, 27lkrshp 33410 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5648, 53, 54, 55syl3anc 1318 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5747, 48, 52, 56lshpcmp 33293 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
581ad3antrrr 762 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
5915ad3antrrr 762 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
60 simpllr 795 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
61 simpr 476 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
624, 5, 13, 11, 12, 27eqlkr2 33405 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
6358, 59, 60, 61, 62syl121anc 1323 . . . . . 6 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
6463ex 449 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
6557, 64sylbid 229 . . . 4 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
6625, 46, 65pm2.61da2ne 2870 . . 3 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
671ad2antrr 758 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6815ad2antrr 758 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
69 simpr 476 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
7011, 4, 5, 13, 12, 27, 67, 68, 69lkrscss 33403 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))))
7170ex 449 . . . . 5 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘})))))
72 fveq2 6103 . . . . . . 7 (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))))
7372sseq2d 3596 . . . . . 6 (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘})))))
7473biimprcd 239 . . . . 5 ((𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7571, 74syl6 34 . . . 4 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7675rexlimdv 3012 . . 3 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7766, 76impbid 201 . 2 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
7877rabbidva 3163 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  wss 3540  {csn 4125   × cxp 5036  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771  0gc0g 15923  LModclmod 18686  LVecclvec 18923  LSHypclsh 33280  LFnlclfn 33362  LKerclk 33390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lshyp 33282  df-lfl 33363  df-lkr 33391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator