Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lerabdioph | Structured version Visualization version GIF version |
Description: Diophantine set builder for the less or equals relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
lerabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≤ 𝐵} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabdiophlem1 36383 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) | |
2 | rabdiophlem1 36383 | . . . 4 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐵 ∈ ℤ) | |
3 | znn0sub 11301 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ0)) | |
4 | 3 | ralimi 2936 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ≤ 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ0)) |
5 | r19.26 3046 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐵 ∈ ℤ)) | |
6 | rabbi 3097 | . . . . 5 ⊢ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ≤ 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ0) ↔ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≤ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ0}) | |
7 | 4, 5, 6 | 3imtr3i 279 | . . . 4 ⊢ ((∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≤ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ0}) |
8 | 1, 2, 7 | syl2an 493 | . . 3 ⊢ (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≤ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ0}) |
9 | 8 | 3adant1 1072 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≤ 𝐵} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ0}) |
10 | simp1 1054 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0) | |
11 | mzpsubmpt 36324 | . . . . 5 ⊢ (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) | |
12 | 11 | ancoms 468 | . . . 4 ⊢ (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) |
13 | 12 | 3adant1 1072 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) |
14 | elnn0rabdioph 36385 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ (𝐵 − 𝐴)) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ0} ∈ (Dioph‘𝑁)) | |
15 | 10, 13, 14 | syl2anc 691 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝐵 − 𝐴) ∈ ℕ0} ∈ (Dioph‘𝑁)) |
16 | 9, 15 | eqeltrd 2688 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≤ 𝐵} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 1c1 9816 ≤ cle 9954 − cmin 10145 ℕ0cn0 11169 ℤcz 11254 ...cfz 12197 mzPolycmzp 36303 Diophcdioph 36336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 df-mzpcl 36304 df-mzp 36305 df-dioph 36337 |
This theorem is referenced by: eluzrabdioph 36388 rmydioph 36599 |
Copyright terms: Public domain | W3C validator |