Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leordtval | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
leordtval.3 | ⊢ 𝐶 = ran (,) |
Ref | Expression |
---|---|
leordtval | ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . . 3 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
2 | leordtval.2 | . . 3 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
3 | 1, 2 | leordtval2 20826 | . 2 ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
4 | letsr 17050 | . . . 4 ⊢ ≤ ∈ TosetRel | |
5 | ledm 17047 | . . . . 5 ⊢ ℝ* = dom ≤ | |
6 | 1 | leordtvallem1 20824 | . . . . 5 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
7 | 1, 2 | leordtvallem2 20825 | . . . . 5 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
8 | leordtval.3 | . . . . . 6 ⊢ 𝐶 = ran (,) | |
9 | df-ioo 12050 | . . . . . . . 8 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) | |
10 | xrltnle 9984 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) | |
11 | 10 | adantlr 747 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) |
12 | xrltnle 9984 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) | |
13 | 12 | ancoms 468 | . . . . . . . . . . . 12 ⊢ ((𝑏 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
14 | 13 | adantll 746 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
15 | 11, 14 | anbi12d 743 | . . . . . . . . . 10 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦 ∧ 𝑦 < 𝑏) ↔ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦))) |
16 | 15 | rabbidva 3163 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
17 | 16 | mpt2eq3ia 6618 | . . . . . . . 8 ⊢ (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
18 | 9, 17 | eqtri 2632 | . . . . . . 7 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
19 | 18 | rneqi 5273 | . . . . . 6 ⊢ ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
20 | 8, 19 | eqtri 2632 | . . . . 5 ⊢ 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
21 | 5, 6, 7, 20 | ordtbas2 20805 | . . . 4 ⊢ ( ≤ ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
22 | 4, 21 | ax-mp 5 | . . 3 ⊢ (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶) |
23 | 22 | fveq2i 6106 | . 2 ⊢ (topGen‘(fi‘(𝐴 ∪ 𝐵))) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
24 | 3, 23 | eqtri 2632 | 1 ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ∪ cun 3538 class class class wbr 4583 ↦ cmpt 4643 ran crn 5039 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 ficfi 8199 +∞cpnf 9950 -∞cmnf 9951 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 (,)cioo 12046 (,]cioc 12047 [,)cico 12048 topGenctg 15921 ordTopcordt 15982 TosetRel ctsr 17022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fi 8200 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-ioo 12050 df-ioc 12051 df-ico 12052 df-icc 12053 df-topgen 15927 df-ordt 15984 df-ps 17023 df-tsr 17024 df-top 20521 df-bases 20522 |
This theorem is referenced by: iocpnfordt 20829 icomnfordt 20830 iooordt 20831 pnfnei 20834 mnfnei 20835 xrtgioo 22417 |
Copyright terms: Public domain | W3C validator |