MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leord2 Structured version   Visualization version   GIF version

Theorem leord2 10437
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord2.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
Assertion
Ref Expression
leord2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷𝑁𝑀))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem leord2
StepHypRef Expression
1 ltord.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
21negeqd 10154 . . 3 (𝑥 = 𝑦 → -𝐴 = -𝐵)
3 ltord.2 . . . 4 (𝑥 = 𝐶𝐴 = 𝑀)
43negeqd 10154 . . 3 (𝑥 = 𝐶 → -𝐴 = -𝑀)
5 ltord.3 . . . 4 (𝑥 = 𝐷𝐴 = 𝑁)
65negeqd 10154 . . 3 (𝑥 = 𝐷 → -𝐴 = -𝑁)
7 ltord.4 . . 3 𝑆 ⊆ ℝ
8 ltord.5 . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
98renegcld 10336 . . 3 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
10 ltord2.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
118ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
121eleq1d 2672 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
1312rspccva 3281 . . . . . . 7 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝑦𝑆) → 𝐵 ∈ ℝ)
1411, 13sylan 487 . . . . . 6 ((𝜑𝑦𝑆) → 𝐵 ∈ ℝ)
1514adantrl 748 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐵 ∈ ℝ)
168adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 ∈ ℝ)
17 ltneg 10407 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1815, 16, 17syl2anc 691 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1910, 18sylibd 228 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵))
202, 4, 6, 7, 9, 19leord1 10434 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷 ↔ -𝑀 ≤ -𝑁))
215eleq1d 2672 . . . . . 6 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3281 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2311, 22sylan 487 . . . 4 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2423adantrl 748 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
253eleq1d 2672 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
2625rspccva 3281 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2711, 26sylan 487 . . . 4 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
2827adantrr 749 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
29 leneg 10410 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁𝑀 ↔ -𝑀 ≤ -𝑁))
3024, 28, 29syl2anc 691 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑁𝑀 ↔ -𝑀 ≤ -𝑁))
3120, 30bitr4d 270 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540   class class class wbr 4583  cr 9814   < clt 9953  cle 9954  -cneg 10146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator