MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1i Structured version   Visualization version   GIF version

Theorem ledivp1i 10828
Description: Less-than-or-equal-to and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ledivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)

Proof of Theorem ledivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 9918 . . . . . 6 1 ∈ ℝ
42, 3readdcli 9932 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 10806 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 10039 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 10757 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 703 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1406 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 702 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1075 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 9919 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 10043 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 703 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 10442 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 10670 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 lemul1 10754 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1403 . . . . . . . . . 10 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2120ex 449 . . . . . . . . 9 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
224, 21mpani 708 . . . . . . . 8 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
2318, 22mpcom 37 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2423biimpd 218 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2514, 24syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2625imp 444 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2716recni 9931 . . . . . . 7 𝐵 ∈ ℂ
284recni 9931 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2927, 28divcan1zi 10640 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3014, 15, 293syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3130adantr 480 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3226, 31breqtrd 4609 . . 3 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
33323adant1 1072 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
341, 2remulcli 9933 . . 3 (𝐴 · 𝐶) ∈ ℝ
351, 4remulcli 9933 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3634, 35, 16letri 10045 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) ≤ 𝐵) → (𝐴 · 𝐶) ≤ 𝐵)
3711, 33, 36syl2anc 691 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator