MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecldbas Structured version   Visualization version   GIF version

Theorem lecldbas 20833
Description: The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
lecldbas.1 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*𝑥))
Assertion
Ref Expression
lecldbas (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹))

Proof of Theorem lecldbas
Dummy variables 𝑎 𝑏 𝑐 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2610 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
31, 2leordtval2 20826 . . 3 (ordTop‘ ≤ ) = (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))))
4 fvex 6113 . . . 4 (fi‘ran 𝐹) ∈ V
5 fvex 6113 . . . . . 6 (ordTop‘ ≤ ) ∈ V
6 lecldbas.1 . . . . . . . 8 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*𝑥))
7 iccf 12143 . . . . . . . . . . 11 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
8 ffn 5958 . . . . . . . . . . 11 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
97, 8ax-mp 5 . . . . . . . . . 10 [,] Fn (ℝ* × ℝ*)
10 ovelrn 6708 . . . . . . . . . 10 ([,] Fn (ℝ* × ℝ*) → (𝑥 ∈ ran [,] ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏)))
119, 10ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran [,] ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏))
12 difeq2 3684 . . . . . . . . . . . 12 (𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) = (ℝ* ∖ (𝑎[,]𝑏)))
13 iccordt 20828 . . . . . . . . . . . . 13 (𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤ ))
14 letopuni 20821 . . . . . . . . . . . . . 14 * = (ordTop‘ ≤ )
1514cldopn 20645 . . . . . . . . . . . . 13 ((𝑎[,]𝑏) ∈ (Clsd‘(ordTop‘ ≤ )) → (ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤ ))
1613, 15ax-mp 5 . . . . . . . . . . . 12 (ℝ* ∖ (𝑎[,]𝑏)) ∈ (ordTop‘ ≤ )
1712, 16syl6eqel 2696 . . . . . . . . . . 11 (𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
1817rexlimivw 3011 . . . . . . . . . 10 (∃𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
1918rexlimivw 3011 . . . . . . . . 9 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎[,]𝑏) → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
2011, 19sylbi 206 . . . . . . . 8 (𝑥 ∈ ran [,] → (ℝ*𝑥) ∈ (ordTop‘ ≤ ))
216, 20fmpti 6291 . . . . . . 7 𝐹:ran [,]⟶(ordTop‘ ≤ )
22 frn 5966 . . . . . . 7 (𝐹:ran [,]⟶(ordTop‘ ≤ ) → ran 𝐹 ⊆ (ordTop‘ ≤ ))
2321, 22ax-mp 5 . . . . . 6 ran 𝐹 ⊆ (ordTop‘ ≤ )
245, 23ssexi 4731 . . . . 5 ran 𝐹 ∈ V
25 eqid 2610 . . . . . . . 8 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
26 mnfxr 9975 . . . . . . . . . . 11 -∞ ∈ ℝ*
27 fnovrn 6707 . . . . . . . . . . 11 (([,] Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞[,]𝑦) ∈ ran [,])
289, 26, 27mp3an12 1406 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (-∞[,]𝑦) ∈ ran [,])
2926a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → -∞ ∈ ℝ*)
30 id 22 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
31 pnfxr 9971 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → +∞ ∈ ℝ*)
33 mnfle 11845 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
34 pnfge 11840 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
35 df-icc 12053 . . . . . . . . . . . . . . 15 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐𝑏)})
36 df-ioc 12051 . . . . . . . . . . . . . . 15 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
37 xrltnle 9984 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦 < 𝑧 ↔ ¬ 𝑧𝑦))
38 xrletr 11865 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧𝑦𝑦 ≤ +∞) → 𝑧 ≤ +∞))
39 xrlelttr 11863 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦 < 𝑧) → -∞ < 𝑧))
40 xrltle 11858 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑧 ∈ ℝ*) → (-∞ < 𝑧 → -∞ ≤ 𝑧))
41403adant2 1073 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (-∞ < 𝑧 → -∞ ≤ 𝑧))
4239, 41syld 46 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦 < 𝑧) → -∞ ≤ 𝑧))
4335, 36, 37, 35, 38, 42ixxun 12062 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 ≤ +∞)) → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = (-∞[,]+∞))
4429, 30, 32, 33, 34, 43syl32anc 1326 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = (-∞[,]+∞))
45 iccmax 12120 . . . . . . . . . . . . 13 (-∞[,]+∞) = ℝ*
4644, 45syl6eq 2660 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ*)
47 iccssxr 12127 . . . . . . . . . . . . 13 (-∞[,]𝑦) ⊆ ℝ*
4835, 36, 37ixxdisj 12061 . . . . . . . . . . . . . 14 ((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅)
4926, 31, 48mp3an13 1407 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅)
50 uneqdifeq 4009 . . . . . . . . . . . . 13 (((-∞[,]𝑦) ⊆ ℝ* ∧ ((-∞[,]𝑦) ∩ (𝑦(,]+∞)) = ∅) → (((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞)))
5147, 49, 50sylancr 694 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (((-∞[,]𝑦) ∪ (𝑦(,]+∞)) = ℝ* ↔ (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞)))
5246, 51mpbid 221 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (ℝ* ∖ (-∞[,]𝑦)) = (𝑦(,]+∞))
5352eqcomd 2616 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (𝑦(,]+∞) = (ℝ* ∖ (-∞[,]𝑦)))
54 difeq2 3684 . . . . . . . . . . . 12 (𝑥 = (-∞[,]𝑦) → (ℝ*𝑥) = (ℝ* ∖ (-∞[,]𝑦)))
5554eqeq2d 2620 . . . . . . . . . . 11 (𝑥 = (-∞[,]𝑦) → ((𝑦(,]+∞) = (ℝ*𝑥) ↔ (𝑦(,]+∞) = (ℝ* ∖ (-∞[,]𝑦))))
5655rspcev 3282 . . . . . . . . . 10 (((-∞[,]𝑦) ∈ ran [,] ∧ (𝑦(,]+∞) = (ℝ* ∖ (-∞[,]𝑦))) → ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
5728, 53, 56syl2anc 691 . . . . . . . . 9 (𝑦 ∈ ℝ* → ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
58 xrex 11705 . . . . . . . . . . 11 * ∈ V
59 difexg 4735 . . . . . . . . . . 11 (ℝ* ∈ V → (ℝ*𝑥) ∈ V)
6058, 59ax-mp 5 . . . . . . . . . 10 (ℝ*𝑥) ∈ V
616, 60elrnmpti 5297 . . . . . . . . 9 ((𝑦(,]+∞) ∈ ran 𝐹 ↔ ∃𝑥 ∈ ran [,](𝑦(,]+∞) = (ℝ*𝑥))
6257, 61sylibr 223 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦(,]+∞) ∈ ran 𝐹)
6325, 62fmpti 6291 . . . . . . 7 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)):ℝ*⟶ran 𝐹
64 frn 5966 . . . . . . 7 ((𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)):ℝ*⟶ran 𝐹 → ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ⊆ ran 𝐹)
6563, 64ax-mp 5 . . . . . 6 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ⊆ ran 𝐹
66 eqid 2610 . . . . . . . 8 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
67 fnovrn 6707 . . . . . . . . . . 11 (([,] Fn (ℝ* × ℝ*) ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦[,]+∞) ∈ ran [,])
689, 31, 67mp3an13 1407 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (𝑦[,]+∞) ∈ ran [,])
69 df-ico 12052 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
70 xrlenlt 9982 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝑧 ↔ ¬ 𝑧 < 𝑦))
71 xrltletr 11864 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦𝑦 ≤ +∞) → 𝑧 < +∞))
72 xrltle 11858 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤ +∞))
73723adant2 1073 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑧 < +∞ → 𝑧 ≤ +∞))
7471, 73syld 46 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑧 < 𝑦𝑦 ≤ +∞) → 𝑧 ≤ +∞))
75 xrletr 11865 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((-∞ ≤ 𝑦𝑦𝑧) → -∞ ≤ 𝑧))
7669, 35, 70, 35, 74, 75ixxun 12062 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 ≤ +∞)) → ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = (-∞[,]+∞))
7729, 30, 32, 33, 34, 76syl32anc 1326 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = (-∞[,]+∞))
78 uncom 3719 . . . . . . . . . . . . 13 ((-∞[,)𝑦) ∪ (𝑦[,]+∞)) = ((𝑦[,]+∞) ∪ (-∞[,)𝑦))
7977, 78, 453eqtr3g 2667 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ*)
80 iccssxr 12127 . . . . . . . . . . . . 13 (𝑦[,]+∞) ⊆ ℝ*
81 incom 3767 . . . . . . . . . . . . . 14 ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ((-∞[,)𝑦) ∩ (𝑦[,]+∞))
8269, 35, 70ixxdisj 12061 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,)𝑦) ∩ (𝑦[,]+∞)) = ∅)
8326, 31, 82mp3an13 1407 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((-∞[,)𝑦) ∩ (𝑦[,]+∞)) = ∅)
8481, 83syl5eq 2656 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ∅)
85 uneqdifeq 4009 . . . . . . . . . . . . 13 (((𝑦[,]+∞) ⊆ ℝ* ∧ ((𝑦[,]+∞) ∩ (-∞[,)𝑦)) = ∅) → (((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦)))
8680, 84, 85sylancr 694 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (((𝑦[,]+∞) ∪ (-∞[,)𝑦)) = ℝ* ↔ (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦)))
8779, 86mpbid 221 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (ℝ* ∖ (𝑦[,]+∞)) = (-∞[,)𝑦))
8887eqcomd 2616 . . . . . . . . . 10 (𝑦 ∈ ℝ* → (-∞[,)𝑦) = (ℝ* ∖ (𝑦[,]+∞)))
89 difeq2 3684 . . . . . . . . . . . 12 (𝑥 = (𝑦[,]+∞) → (ℝ*𝑥) = (ℝ* ∖ (𝑦[,]+∞)))
9089eqeq2d 2620 . . . . . . . . . . 11 (𝑥 = (𝑦[,]+∞) → ((-∞[,)𝑦) = (ℝ*𝑥) ↔ (-∞[,)𝑦) = (ℝ* ∖ (𝑦[,]+∞))))
9190rspcev 3282 . . . . . . . . . 10 (((𝑦[,]+∞) ∈ ran [,] ∧ (-∞[,)𝑦) = (ℝ* ∖ (𝑦[,]+∞))) → ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
9268, 88, 91syl2anc 691 . . . . . . . . 9 (𝑦 ∈ ℝ* → ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
936, 60elrnmpti 5297 . . . . . . . . 9 ((-∞[,)𝑦) ∈ ran 𝐹 ↔ ∃𝑥 ∈ ran [,](-∞[,)𝑦) = (ℝ*𝑥))
9492, 93sylibr 223 . . . . . . . 8 (𝑦 ∈ ℝ* → (-∞[,)𝑦) ∈ ran 𝐹)
9566, 94fmpti 6291 . . . . . . 7 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹
96 frn 5966 . . . . . . 7 ((𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)):ℝ*⟶ran 𝐹 → ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ⊆ ran 𝐹)
9795, 96ax-mp 5 . . . . . 6 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ⊆ ran 𝐹
9865, 97unssi 3750 . . . . 5 (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ⊆ ran 𝐹
99 fiss 8213 . . . . 5 ((ran 𝐹 ∈ V ∧ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ⊆ ran 𝐹) → (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹))
10024, 98, 99mp2an 704 . . . 4 (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹)
101 tgss 20583 . . . 4 (((fi‘ran 𝐹) ∈ V ∧ (fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)))) ⊆ (fi‘ran 𝐹)) → (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))) ⊆ (topGen‘(fi‘ran 𝐹)))
1024, 100, 101mp2an 704 . . 3 (topGen‘(fi‘(ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))) ⊆ (topGen‘(fi‘ran 𝐹))
1033, 102eqsstri 3598 . 2 (ordTop‘ ≤ ) ⊆ (topGen‘(fi‘ran 𝐹))
104 letop 20820 . . 3 (ordTop‘ ≤ ) ∈ Top
105 tgfiss 20606 . . 3 (((ordTop‘ ≤ ) ∈ Top ∧ ran 𝐹 ⊆ (ordTop‘ ≤ )) → (topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤ ))
106104, 23, 105mp2an 704 . 2 (topGen‘(fi‘ran 𝐹)) ⊆ (ordTop‘ ≤ )
107103, 106eqssi 3584 1 (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  ficfi 8199  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  (,]cioc 12047  [,)cico 12048  [,]cicc 12049  topGenctg 15921  ordTopcordt 15982  Topctop 20517  Clsdccld 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-ioc 12051  df-ico 12052  df-icc 12053  df-topgen 15927  df-ordt 15984  df-ps 17023  df-tsr 17024  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator