Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leatb Structured version   Visualization version   GIF version

Theorem leatb 33597
Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 28589 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leatb ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))

Proof of Theorem leatb
StepHypRef Expression
1 leatom.b . . . . . 6 𝐵 = (Base‘𝐾)
2 leatom.l . . . . . 6 = (le‘𝐾)
3 leatom.z . . . . . 6 0 = (0.‘𝐾)
41, 2, 3op0le 33491 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
543adant3 1074 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 𝑋)
65biantrurd 528 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ ( 0 𝑋𝑋 𝑃)))
7 opposet 33486 . . . . . 6 (𝐾 ∈ OP → 𝐾 ∈ Poset)
873ad2ant1 1075 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
91, 3op0cl 33489 . . . . . . 7 (𝐾 ∈ OP → 0𝐵)
10 leatom.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
111, 10atbase 33594 . . . . . . 7 (𝑃𝐴𝑃𝐵)
12 id 22 . . . . . . 7 (𝑋𝐵𝑋𝐵)
139, 11, 123anim123i 1240 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴𝑋𝐵) → ( 0𝐵𝑃𝐵𝑋𝐵))
14133com23 1263 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → ( 0𝐵𝑃𝐵𝑋𝐵))
15 eqid 2610 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
163, 15, 10atcvr0 33593 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
17163adant2 1073 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
181, 2, 15cvrnbtwn4 33584 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
198, 14, 17, 18syl3anc 1318 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ ( 0 = 𝑋𝑋 = 𝑃)))
20 eqcom 2617 . . . . 5 ( 0 = 𝑋𝑋 = 0 )
2120orbi1i 541 . . . 4 (( 0 = 𝑋𝑋 = 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃))
2219, 21syl6bb 275 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (( 0 𝑋𝑋 𝑃) ↔ (𝑋 = 0𝑋 = 𝑃)))
236, 22bitrd 267 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 0𝑋 = 𝑃)))
24 orcom 401 . 2 ((𝑋 = 0𝑋 = 𝑃) ↔ (𝑋 = 𝑃𝑋 = 0 ))
2523, 24syl6bb 275 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  0.cp0 16860  OPcops 33477  ccvr 33567  Atomscatm 33568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-preset 16751  df-poset 16769  df-plt 16781  df-glb 16798  df-p0 16862  df-oposet 33481  df-covers 33571  df-ats 33572
This theorem is referenced by:  leat  33598  leat2  33599  meetat  33601
  Copyright terms: Public domain W3C validator