Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leatb | Structured version Visualization version GIF version |
Description: A poset element less than or equal to an atom equals either zero or the atom. (atss 28589 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
leatom.l | ⊢ ≤ = (le‘𝐾) |
leatom.z | ⊢ 0 = (0.‘𝐾) |
leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
leatb | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leatom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | leatom.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | leatom.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | op0le 33491 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
5 | 4 | 3adant3 1074 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ≤ 𝑋) |
6 | 5 | biantrurd 528 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃))) |
7 | opposet 33486 | . . . . . 6 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
8 | 7 | 3ad2ant1 1075 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
9 | 1, 3 | op0cl 33489 | . . . . . . 7 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
10 | leatom.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 1, 10 | atbase 33594 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
12 | id 22 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
13 | 9, 11, 12 | 3anim123i 1240 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
14 | 13 | 3com23 1263 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
15 | eqid 2610 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
16 | 3, 15, 10 | atcvr0 33593 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
17 | 16 | 3adant2 1073 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
18 | 1, 2, 15 | cvrnbtwn4 33584 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
19 | 8, 14, 17, 18 | syl3anc 1318 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃))) |
20 | eqcom 2617 | . . . . 5 ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
21 | 20 | orbi1i 541 | . . . 4 ⊢ (( 0 = 𝑋 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃)) |
22 | 19, 21 | syl6bb 275 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
23 | 6, 22 | bitrd 267 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃))) |
24 | orcom 401 | . 2 ⊢ ((𝑋 = 0 ∨ 𝑋 = 𝑃) ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 )) | |
25 | 23, 24 | syl6bb 275 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 Basecbs 15695 lecple 15775 Posetcpo 16763 0.cp0 16860 OPcops 33477 ⋖ ccvr 33567 Atomscatm 33568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-preset 16751 df-poset 16769 df-plt 16781 df-glb 16798 df-p0 16862 df-oposet 33481 df-covers 33571 df-ats 33572 |
This theorem is referenced by: leat 33598 leat2 33599 meetat 33601 |
Copyright terms: Public domain | W3C validator |