Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvbase Structured version   Visualization version   GIF version

Theorem ldualvbase 33431
Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualvbase.f 𝐹 = (LFnl‘𝑊)
ldualvbase.d 𝐷 = (LDual‘𝑊)
ldualvbase.v 𝑉 = (Base‘𝐷)
ldualvbase.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualvbase (𝜑𝑉 = 𝐹)

Proof of Theorem ldualvbase
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2610 . . . 4 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3 eqid 2610 . . . 4 ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))
4 ldualvbase.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvbase.d . . . 4 𝐷 = (LDual‘𝑊)
6 eqid 2610 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2610 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2610 . . . 4 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
9 eqid 2610 . . . 4 (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊))
10 eqid 2610 . . . 4 (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
11 ldualvbase.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 33430 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6107 . 2 (𝜑 → (Base‘𝐷) = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvbase.v . 2 𝑉 = (Base‘𝐷)
15 fvex 6113 . . . 4 (LFnl‘𝑊) ∈ V
164, 15eqeltri 2684 . . 3 𝐹 ∈ V
17 eqid 2610 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})
1817lmodbase 15841 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
1916, 18ax-mp 5 . 2 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
2013, 14, 193eqtr4g 2669 1 (𝜑𝑉 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  {csn 4125  {ctp 4129  cop 4131   × cxp 5036  cres 5040  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑓 cof 6793  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  opprcoppr 18445  LFnlclfn 33362  LDualcld 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-sca 15784  df-vsca 15785  df-ldual 33429
This theorem is referenced by:  ldualelvbase  33432  ldualgrplem  33450  lduallmodlem  33457  lclkr  35840  lclkrs  35846  lcfrvalsnN  35848  lcfrlem4  35852  lcfrlem5  35853  lcfrlem6  35854  lcfrlem16  35865  lcfr  35892  lcdvbase  35900  mapdunirnN  35957
  Copyright terms: Public domain W3C validator