Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual1dim | Structured version Visualization version GIF version |
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
Ref | Expression |
---|---|
ldual1dim.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldual1dim.l | ⊢ 𝐿 = (LKer‘𝑊) |
ldual1dim.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldual1dim.n | ⊢ 𝑁 = (LSpan‘𝐷) |
ldual1dim.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
ldual1dim.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldual1dim | ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2610 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | ldual1dim.d | . . . . . . . 8 ⊢ 𝐷 = (LDual‘𝑊) | |
4 | eqid 2610 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
5 | eqid 2610 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
6 | ldual1dim.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 1, 2, 3, 4, 5, 6 | ldualsbase 33438 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊))) |
8 | 7 | eleq2d 2673 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) |
9 | 8 | anbi1d 737 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)))) |
10 | ldual1dim.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
11 | eqid 2610 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
12 | eqid 2610 | . . . . . . . 8 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
13 | eqid 2610 | . . . . . . . 8 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
14 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) |
15 | simpr 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) | |
16 | ldual1dim.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) |
18 | 10, 11, 1, 2, 12, 3, 13, 14, 15, 17 | ldualvs 33442 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠 ‘𝐷)𝐺) = (𝐺 ∘𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) |
19 | 18 | eqeq2d 2620 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ 𝑔 = (𝐺 ∘𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
20 | 19 | pm5.32da 671 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
21 | 9, 20 | bitrd 267 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺 ∘𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))) |
22 | 21 | rexbidv2 3030 | . . 3 ⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))) |
23 | 22 | abbidv 2728 | . 2 ⊢ (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
24 | lveclmod 18927 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
25 | 3, 24 | lduallmod 33458 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ LMod) |
26 | 6, 25 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ LMod) |
27 | eqid 2610 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
28 | 10, 3, 27, 6, 16 | ldualelvbase 33432 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
29 | ldual1dim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝐷) | |
30 | 4, 5, 27, 13, 29 | lspsn 18823 | . . 3 ⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
31 | 26, 28, 30 | syl2anc 691 | . 2 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠 ‘𝐷)𝐺)}) |
32 | ldual1dim.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
33 | 11, 1, 10, 32, 2, 12, 6, 16 | lfl1dim 33426 | . 2 ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺 ∘𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))}) |
34 | 23, 31, 33 | 3eqtr4d 2654 | 1 ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 ∃wrex 2897 {crab 2900 ⊆ wss 3540 {csn 4125 × cxp 5036 ‘cfv 5804 (class class class)co 6549 ∘𝑓 cof 6793 Basecbs 15695 .rcmulr 15769 Scalarcsca 15771 ·𝑠 cvsca 15772 LModclmod 18686 LSpanclspn 18792 LVecclvec 18923 LFnlclfn 33362 LKerclk 33390 LDualcld 33428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-cntz 17573 df-lsm 17874 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-drng 18572 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lvec 18924 df-lshyp 33282 df-lfl 33363 df-lkr 33391 df-ldual 33429 |
This theorem is referenced by: mapdsn3 35950 |
Copyright terms: Public domain | W3C validator |