Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn Structured version   Visualization version   GIF version

Theorem lcvnbtwn 33330
 Description: The covers relation implies no in-betweenness. (cvnbtwn 28529 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
Assertion
Ref Expression
lcvnbtwn (𝜑 → ¬ (𝑅𝑈𝑈𝑇))

Proof of Theorem lcvnbtwn
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
2 lcvnbtwn.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lcvnbtwn.c . . . . 5 𝐶 = ( ⋖L𝑊)
4 lcvnbtwn.w . . . . 5 (𝜑𝑊𝑋)
5 lcvnbtwn.r . . . . 5 (𝜑𝑅𝑆)
6 lcvnbtwn.t . . . . 5 (𝜑𝑇𝑆)
72, 3, 4, 5, 6lcvbr 33326 . . . 4 (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))))
81, 7mpbid 221 . . 3 (𝜑 → (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇)))
98simprd 478 . 2 (𝜑 → ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
10 lcvnbtwn.u . . 3 (𝜑𝑈𝑆)
11 psseq2 3657 . . . . 5 (𝑢 = 𝑈 → (𝑅𝑢𝑅𝑈))
12 psseq1 3656 . . . . 5 (𝑢 = 𝑈 → (𝑢𝑇𝑈𝑇))
1311, 12anbi12d 743 . . . 4 (𝑢 = 𝑈 → ((𝑅𝑢𝑢𝑇) ↔ (𝑅𝑈𝑈𝑇)))
1413rspcev 3282 . . 3 ((𝑈𝑆 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
1510, 14sylan 487 . 2 ((𝜑 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
169, 15mtand 689 1 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ⊊ wpss 3541   class class class wbr 4583  ‘cfv 5804  LSubSpclss 18753   ⋖L clcv 33323 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-lcv 33324 This theorem is referenced by:  lcvntr  33331  lcvnbtwn2  33332  lcvnbtwn3  33333
 Copyright terms: Public domain W3C validator