Step | Hyp | Ref
| Expression |
1 | | lcvexch.s |
. . . 4
⊢ 𝑆 = (LSubSp‘𝑊) |
2 | | lcvexch.c |
. . . 4
⊢ 𝐶 = ( ⋖L
‘𝑊) |
3 | | lcvexch.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | | lcvexch.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
5 | | lcvexch.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
6 | 1 | lssincl 18786 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∩ 𝑈) ∈ 𝑆) |
7 | 3, 4, 5, 6 | syl3anc 1318 |
. . . 4
⊢ (𝜑 → (𝑇 ∩ 𝑈) ∈ 𝑆) |
8 | | lcvexch.g |
. . . 4
⊢ (𝜑 → (𝑇 ∩ 𝑈)𝐶𝑈) |
9 | 1, 2, 3, 7, 5, 8 | lcvpss 33329 |
. . 3
⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊊ 𝑈) |
10 | | lcvexch.p |
. . . 4
⊢ ⊕ =
(LSSum‘𝑊) |
11 | 1, 10, 2, 3, 4, 5 | lcvexchlem1 33339 |
. . 3
⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) |
12 | 9, 11 | mpbird 246 |
. 2
⊢ (𝜑 → 𝑇 ⊊ (𝑇 ⊕ 𝑈)) |
13 | | simp3l 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → 𝑇 ⊆ 𝑠) |
14 | | ssrin 3800 |
. . . . . . . 8
⊢ (𝑇 ⊆ 𝑠 → (𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈)) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈)) |
16 | | inss2 3796 |
. . . . . . 7
⊢ (𝑠 ∩ 𝑈) ⊆ 𝑈 |
17 | 15, 16 | jctir 559 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → ((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈)) |
18 | 8 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (𝑇 ∩ 𝑈)𝐶𝑈) |
19 | 1, 2, 3, 7, 5 | lcvbr3 33328 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑇 ∩ 𝑈)𝐶𝑈 ↔ ((𝑇 ∩ 𝑈) ⊊ 𝑈 ∧ ∀𝑟 ∈ 𝑆 (((𝑇 ∩ 𝑈) ⊆ 𝑟 ∧ 𝑟 ⊆ 𝑈) → (𝑟 = (𝑇 ∩ 𝑈) ∨ 𝑟 = 𝑈))))) |
20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → ((𝑇 ∩ 𝑈)𝐶𝑈 ↔ ((𝑇 ∩ 𝑈) ⊊ 𝑈 ∧ ∀𝑟 ∈ 𝑆 (((𝑇 ∩ 𝑈) ⊆ 𝑟 ∧ 𝑟 ⊆ 𝑈) → (𝑟 = (𝑇 ∩ 𝑈) ∨ 𝑟 = 𝑈))))) |
21 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → 𝑊 ∈ LMod) |
22 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝑆) |
23 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → 𝑈 ∈ 𝑆) |
24 | 1 | lssincl 18786 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑠 ∩ 𝑈) ∈ 𝑆) |
25 | 21, 22, 23, 24 | syl3anc 1318 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑠 ∩ 𝑈) ∈ 𝑆) |
26 | | sseq2 3590 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ∩ 𝑈) → ((𝑇 ∩ 𝑈) ⊆ 𝑟 ↔ (𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈))) |
27 | | sseq1 3589 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ∩ 𝑈) → (𝑟 ⊆ 𝑈 ↔ (𝑠 ∩ 𝑈) ⊆ 𝑈)) |
28 | 26, 27 | anbi12d 743 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑠 ∩ 𝑈) → (((𝑇 ∩ 𝑈) ⊆ 𝑟 ∧ 𝑟 ⊆ 𝑈) ↔ ((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈))) |
29 | | eqeq1 2614 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ∩ 𝑈) → (𝑟 = (𝑇 ∩ 𝑈) ↔ (𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈))) |
30 | | eqeq1 2614 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑠 ∩ 𝑈) → (𝑟 = 𝑈 ↔ (𝑠 ∩ 𝑈) = 𝑈)) |
31 | 29, 30 | orbi12d 742 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑠 ∩ 𝑈) → ((𝑟 = (𝑇 ∩ 𝑈) ∨ 𝑟 = 𝑈) ↔ ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈))) |
32 | 28, 31 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑠 ∩ 𝑈) → ((((𝑇 ∩ 𝑈) ⊆ 𝑟 ∧ 𝑟 ⊆ 𝑈) → (𝑟 = (𝑇 ∩ 𝑈) ∨ 𝑟 = 𝑈)) ↔ (((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈)))) |
33 | 32 | rspcv 3278 |
. . . . . . . . . . 11
⊢ ((𝑠 ∩ 𝑈) ∈ 𝑆 → (∀𝑟 ∈ 𝑆 (((𝑇 ∩ 𝑈) ⊆ 𝑟 ∧ 𝑟 ⊆ 𝑈) → (𝑟 = (𝑇 ∩ 𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈)))) |
34 | 25, 33 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (∀𝑟 ∈ 𝑆 (((𝑇 ∩ 𝑈) ⊆ 𝑟 ∧ 𝑟 ⊆ 𝑈) → (𝑟 = (𝑇 ∩ 𝑈) ∨ 𝑟 = 𝑈)) → (((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈)))) |
35 | 34 | adantld 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (((𝑇 ∩ 𝑈) ⊊ 𝑈 ∧ ∀𝑟 ∈ 𝑆 (((𝑇 ∩ 𝑈) ⊆ 𝑟 ∧ 𝑟 ⊆ 𝑈) → (𝑟 = (𝑇 ∩ 𝑈) ∨ 𝑟 = 𝑈))) → (((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈)))) |
36 | 20, 35 | sylbid 229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → ((𝑇 ∩ 𝑈)𝐶𝑈 → (((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈)))) |
37 | 36 | 3adant3 1074 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → ((𝑇 ∩ 𝑈)𝐶𝑈 → (((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈)))) |
38 | 18, 37 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (((𝑇 ∩ 𝑈) ⊆ (𝑠 ∩ 𝑈) ∧ (𝑠 ∩ 𝑈) ⊆ 𝑈) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈))) |
39 | 17, 38 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈)) |
40 | | oveq1 6556 |
. . . . . . 7
⊢ ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) → ((𝑠 ∩ 𝑈) ⊕ 𝑇) = ((𝑇 ∩ 𝑈) ⊕ 𝑇)) |
41 | 3 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → 𝑊 ∈ LMod) |
42 | 4 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → 𝑇 ∈ 𝑆) |
43 | 5 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → 𝑈 ∈ 𝑆) |
44 | | simp2 1055 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → 𝑠 ∈ 𝑆) |
45 | | simp3r 1083 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → 𝑠 ⊆ (𝑇 ⊕ 𝑈)) |
46 | 1, 10, 2, 41, 42, 43, 44, 13, 45 | lcvexchlem3 33341 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → ((𝑠 ∩ 𝑈) ⊕ 𝑇) = 𝑠) |
47 | 1 | lsssssubg 18779 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
48 | 3, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
49 | 48, 7 | sseldd 3569 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 ∩ 𝑈) ∈ (SubGrp‘𝑊)) |
50 | 48, 4 | sseldd 3569 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
51 | | inss1 3795 |
. . . . . . . . . . 11
⊢ (𝑇 ∩ 𝑈) ⊆ 𝑇 |
52 | 51 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ 𝑇) |
53 | 10 | lsmss1 17902 |
. . . . . . . . . 10
⊢ (((𝑇 ∩ 𝑈) ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑇 ∩ 𝑈) ⊆ 𝑇) → ((𝑇 ∩ 𝑈) ⊕ 𝑇) = 𝑇) |
54 | 49, 50, 52, 53 | syl3anc 1318 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑇 ∩ 𝑈) ⊕ 𝑇) = 𝑇) |
55 | 54 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → ((𝑇 ∩ 𝑈) ⊕ 𝑇) = 𝑇) |
56 | 46, 55 | eqeq12d 2625 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (((𝑠 ∩ 𝑈) ⊕ 𝑇) = ((𝑇 ∩ 𝑈) ⊕ 𝑇) ↔ 𝑠 = 𝑇)) |
57 | 40, 56 | syl5ib 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → ((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) → 𝑠 = 𝑇)) |
58 | | oveq1 6556 |
. . . . . . 7
⊢ ((𝑠 ∩ 𝑈) = 𝑈 → ((𝑠 ∩ 𝑈) ⊕ 𝑇) = (𝑈 ⊕ 𝑇)) |
59 | | lmodabl 18733 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
60 | 3, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ Abel) |
61 | 48, 5 | sseldd 3569 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
62 | 10 | lsmcom 18084 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → (𝑈 ⊕ 𝑇) = (𝑇 ⊕ 𝑈)) |
63 | 60, 61, 50, 62 | syl3anc 1318 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 ⊕ 𝑇) = (𝑇 ⊕ 𝑈)) |
64 | 63 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (𝑈 ⊕ 𝑇) = (𝑇 ⊕ 𝑈)) |
65 | 46, 64 | eqeq12d 2625 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (((𝑠 ∩ 𝑈) ⊕ 𝑇) = (𝑈 ⊕ 𝑇) ↔ 𝑠 = (𝑇 ⊕ 𝑈))) |
66 | 58, 65 | syl5ib 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → ((𝑠 ∩ 𝑈) = 𝑈 → 𝑠 = (𝑇 ⊕ 𝑈))) |
67 | 57, 66 | orim12d 879 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (((𝑠 ∩ 𝑈) = (𝑇 ∩ 𝑈) ∨ (𝑠 ∩ 𝑈) = 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = (𝑇 ⊕ 𝑈)))) |
68 | 39, 67 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆 ∧ (𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈))) → (𝑠 = 𝑇 ∨ 𝑠 = (𝑇 ⊕ 𝑈))) |
69 | 68 | 3exp 1256 |
. . 3
⊢ (𝜑 → (𝑠 ∈ 𝑆 → ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈)) → (𝑠 = 𝑇 ∨ 𝑠 = (𝑇 ⊕ 𝑈))))) |
70 | 69 | ralrimiv 2948 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ 𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈)) → (𝑠 = 𝑇 ∨ 𝑠 = (𝑇 ⊕ 𝑈)))) |
71 | 1, 10 | lsmcl 18904 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
72 | 3, 4, 5, 71 | syl3anc 1318 |
. . 3
⊢ (𝜑 → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
73 | 1, 2, 3, 4, 72 | lcvbr3 33328 |
. 2
⊢ (𝜑 → (𝑇𝐶(𝑇 ⊕ 𝑈) ↔ (𝑇 ⊊ (𝑇 ⊕ 𝑈) ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ (𝑇 ⊕ 𝑈)) → (𝑠 = 𝑇 ∨ 𝑠 = (𝑇 ⊕ 𝑈)))))) |
74 | 12, 70, 73 | mpbir2and 959 |
1
⊢ (𝜑 → 𝑇𝐶(𝑇 ⊕ 𝑈)) |