Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcosn0 Structured version   Visualization version   GIF version

Theorem lcosn0 42003
 Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincval1.b 𝐵 = (Base‘𝑀)
lincval1.s 𝑆 = (Scalar‘𝑀)
lincval1.r 𝑅 = (Base‘𝑆)
lincval1.f 𝐹 = {⟨𝑉, (0g𝑆)⟩}
Assertion
Ref Expression
lcosn0 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹 ∈ (𝑅𝑚 {𝑉}) ∧ 𝐹 finSupp (0g𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀)))

Proof of Theorem lcosn0
StepHypRef Expression
1 simpr 476 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝑉𝐵)
2 lincval1.s . . . . 5 𝑆 = (Scalar‘𝑀)
3 lincval1.r . . . . 5 𝑅 = (Base‘𝑆)
4 eqid 2610 . . . . 5 (0g𝑆) = (0g𝑆)
52, 3, 4lmod0cl 18712 . . . 4 (𝑀 ∈ LMod → (0g𝑆) ∈ 𝑅)
65adantr 480 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (0g𝑆) ∈ 𝑅)
7 fvex 6113 . . . . 5 (Base‘𝑆) ∈ V
83, 7eqeltri 2684 . . . 4 𝑅 ∈ V
98a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝑅 ∈ V)
10 lincval1.f . . . 4 𝐹 = {⟨𝑉, (0g𝑆)⟩}
1110mapsnop 41916 . . 3 ((𝑉𝐵 ∧ (0g𝑆) ∈ 𝑅𝑅 ∈ V) → 𝐹 ∈ (𝑅𝑚 {𝑉}))
121, 6, 9, 11syl3anc 1318 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹 ∈ (𝑅𝑚 {𝑉}))
13 elmapi 7765 . . . 4 (𝐹 ∈ (𝑅𝑚 {𝑉}) → 𝐹:{𝑉}⟶𝑅)
1412, 13syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹:{𝑉}⟶𝑅)
15 snfi 7923 . . . 4 {𝑉} ∈ Fin
1615a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → {𝑉} ∈ Fin)
17 fvex 6113 . . . 4 (0g𝑆) ∈ V
1817a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (0g𝑆) ∈ V)
1914, 16, 18fdmfifsupp 8168 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → 𝐹 finSupp (0g𝑆))
20 lincval1.b . . 3 𝐵 = (Base‘𝑀)
2120, 2, 3, 10lincval1 42002 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀))
2212, 19, 213jca 1235 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹 ∈ (𝑅𝑚 {𝑉}) ∧ 𝐹 finSupp (0g𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173  {csn 4125  ⟨cop 4131   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  LModclmod 18686   linC clinc 41987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mulg 17364  df-cntz 17573  df-ring 18372  df-lmod 18688  df-linc 41989 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator