Proof of Theorem lcmf
Step | Hyp | Ref
| Expression |
1 | | dvdslcmf 15182 |
. . . . . 6
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) →
∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍)) |
2 | 1 | 3adant3 1074 |
. . . . 5
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) → ∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍)) |
3 | | lcmfledvds 15183 |
. . . . . . 7
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) → ((𝑘 ∈ ℕ ∧
∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘) → (lcm‘𝑍) ≤ 𝑘)) |
4 | 3 | expdimp 452 |
. . . . . 6
⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → (lcm‘𝑍) ≤ 𝑘)) |
5 | 4 | ralrimiva 2949 |
. . . . 5
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) → ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → (lcm‘𝑍) ≤ 𝑘)) |
6 | 2, 5 | jca 553 |
. . . 4
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) → (∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → (lcm‘𝑍) ≤ 𝑘))) |
7 | 6 | adantl 481 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → (lcm‘𝑍) ≤ 𝑘))) |
8 | | breq2 4587 |
. . . . 5
⊢ (𝐾 = (lcm‘𝑍) → (𝑚 ∥ 𝐾 ↔ 𝑚 ∥ (lcm‘𝑍))) |
9 | 8 | ralbidv 2969 |
. . . 4
⊢ (𝐾 = (lcm‘𝑍) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍))) |
10 | | breq1 4586 |
. . . . . 6
⊢ (𝐾 = (lcm‘𝑍) → (𝐾 ≤ 𝑘 ↔ (lcm‘𝑍) ≤ 𝑘)) |
11 | 10 | imbi2d 329 |
. . . . 5
⊢ (𝐾 = (lcm‘𝑍) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘) ↔ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → (lcm‘𝑍) ≤ 𝑘))) |
12 | 11 | ralbidv 2969 |
. . . 4
⊢ (𝐾 = (lcm‘𝑍) → (∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘) ↔ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → (lcm‘𝑍) ≤ 𝑘))) |
13 | 9, 12 | anbi12d 743 |
. . 3
⊢ (𝐾 = (lcm‘𝑍) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) ↔ (∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → (lcm‘𝑍) ≤ 𝑘)))) |
14 | 7, 13 | syl5ibrcom 236 |
. 2
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (𝐾 = (lcm‘𝑍) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)))) |
15 | | lcmfn0cl 15177 |
. . . . . 6
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) →
(lcm‘𝑍) ∈
ℕ) |
16 | 15 | adantl 481 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) →
(lcm‘𝑍) ∈
ℕ) |
17 | | breq2 4587 |
. . . . . . . 8
⊢ (𝑘 = (lcm‘𝑍) → (𝑚 ∥ 𝑘 ↔ 𝑚 ∥ (lcm‘𝑍))) |
18 | 17 | ralbidv 2969 |
. . . . . . 7
⊢ (𝑘 = (lcm‘𝑍) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍))) |
19 | | breq2 4587 |
. . . . . . 7
⊢ (𝑘 = (lcm‘𝑍) → (𝐾 ≤ 𝑘 ↔ 𝐾 ≤ (lcm‘𝑍))) |
20 | 18, 19 | imbi12d 333 |
. . . . . 6
⊢ (𝑘 = (lcm‘𝑍) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘) ↔ (∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) → 𝐾 ≤ (lcm‘𝑍)))) |
21 | 20 | rspcv 3278 |
. . . . 5
⊢
((lcm‘𝑍) ∈ ℕ → (∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘) → (∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) → 𝐾 ≤ (lcm‘𝑍)))) |
22 | 16, 21 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘) → (∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) → 𝐾 ≤ (lcm‘𝑍)))) |
23 | 22 | adantld 482 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → (∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) → 𝐾 ≤ (lcm‘𝑍)))) |
24 | 2 | adantl 481 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → ∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍)) |
25 | | nnre 10904 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℝ) |
26 | 15 | nnred 10912 |
. . . . . . . 8
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) →
(lcm‘𝑍) ∈
ℝ) |
27 | 25, 26 | anim12i 588 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (𝐾 ∈ ℝ ∧
(lcm‘𝑍) ∈
ℝ)) |
28 | | leloe 10003 |
. . . . . . 7
⊢ ((𝐾 ∈ ℝ ∧
(lcm‘𝑍) ∈
ℝ) → (𝐾 ≤
(lcm‘𝑍) ↔
(𝐾 <
(lcm‘𝑍) ∨
𝐾 = (lcm‘𝑍)))) |
29 | 27, 28 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (𝐾 ≤ (lcm‘𝑍) ↔ (𝐾 < (lcm‘𝑍) ∨ 𝐾 = (lcm‘𝑍)))) |
30 | | lcmfledvds 15183 |
. . . . . . . . . . . . . 14
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) → ((𝐾 ∈ ℕ ∧
∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾) → (lcm‘𝑍) ≤ 𝐾)) |
31 | 30 | expd 451 |
. . . . . . . . . . . . 13
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍) → (𝐾 ∈ ℕ →
(∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ≤ 𝐾))) |
32 | 31 | impcom 445 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ≤ 𝐾)) |
33 | | lenlt 9995 |
. . . . . . . . . . . . . 14
⊢
(((lcm‘𝑍) ∈ ℝ ∧ 𝐾 ∈ ℝ) →
((lcm‘𝑍) ≤
𝐾 ↔ ¬ 𝐾 < (lcm‘𝑍))) |
34 | 26, 25, 33 | syl2anr 494 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) →
((lcm‘𝑍) ≤
𝐾 ↔ ¬ 𝐾 < (lcm‘𝑍))) |
35 | | pm2.21 119 |
. . . . . . . . . . . . 13
⊢ (¬
𝐾 <
(lcm‘𝑍) →
(𝐾 <
(lcm‘𝑍) →
𝐾 = (lcm‘𝑍))) |
36 | 34, 35 | syl6bi 242 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) →
((lcm‘𝑍) ≤
𝐾 → (𝐾 < (lcm‘𝑍) → 𝐾 = (lcm‘𝑍)))) |
37 | 32, 36 | syld 46 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (𝐾 < (lcm‘𝑍) → 𝐾 = (lcm‘𝑍)))) |
38 | 37 | com12 32 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
𝑍 𝑚 ∥ 𝐾 → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm‘𝑍) → 𝐾 = (lcm‘𝑍)))) |
39 | 38 | adantr 480 |
. . . . . . . . 9
⊢
((∀𝑚 ∈
𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 < (lcm‘𝑍) → 𝐾 = (lcm‘𝑍)))) |
40 | 39 | com13 86 |
. . . . . . . 8
⊢ (𝐾 < (lcm‘𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → 𝐾 = (lcm‘𝑍)))) |
41 | | 2a1 28 |
. . . . . . . 8
⊢ (𝐾 = (lcm‘𝑍) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → 𝐾 = (lcm‘𝑍)))) |
42 | 40, 41 | jaoi 393 |
. . . . . . 7
⊢ ((𝐾 < (lcm‘𝑍) ∨ 𝐾 = (lcm‘𝑍)) → ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → 𝐾 = (lcm‘𝑍)))) |
43 | 42 | com12 32 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → ((𝐾 < (lcm‘𝑍) ∨ 𝐾 = (lcm‘𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → 𝐾 = (lcm‘𝑍)))) |
44 | 29, 43 | sylbid 229 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (𝐾 ≤ (lcm‘𝑍) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → 𝐾 = (lcm‘𝑍)))) |
45 | 24, 44 | embantd 57 |
. . . 4
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) → 𝐾 ≤ (lcm‘𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → 𝐾 = (lcm‘𝑍)))) |
46 | 45 | com23 84 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ (lcm‘𝑍) → 𝐾 ≤ (lcm‘𝑍)) → 𝐾 = (lcm‘𝑍)))) |
47 | 23, 46 | mpdd 42 |
. 2
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → ((∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)) → 𝐾 = (lcm‘𝑍))) |
48 | 14, 47 | impbid 201 |
1
⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉
𝑍)) → (𝐾 = (lcm‘𝑍) ↔ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)))) |