Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem37 Structured version   Visualization version   GIF version

Theorem lcfrlem37 35886
Description: Lemma for lcfr 35892. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
lcfrlem37.g (𝜑𝐺 ∈ (LSubSp‘𝐷))
lcfrlem37.gs (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
lcfrlem37.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem37.xe (𝜑𝑋𝐸)
lcfrlem37.ye (𝜑𝑌𝐸)
Assertion
Ref Expression
lcfrlem37 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0   𝑓,𝐽   𝑓,𝐿   ,𝑓   + ,𝑓   𝑅,𝑓   · ,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑋   𝑓,𝑌,𝑘,𝑣,𝑤,𝑥,𝑔   𝐶,𝑔,𝑘   𝐷,𝑔,𝑘   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝐽,𝑘   𝑔,𝐿,𝑘   ,𝑔   + ,𝑔   𝑄,𝑔,𝑘   𝑈,𝑘   𝑔,𝑉   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔,𝑘   𝑣,𝑔,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐴(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑔)   · (𝑔)   𝑈(𝑥,𝑤,𝑣,𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   (𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣,𝑓,𝑔,𝑘)

Proof of Theorem lcfrlem37
StepHypRef Expression
1 lcfrlem30.c . . . . 5 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
2 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
3 lcfrlem30.m . . . . . 6 = (-g𝐷)
4 eqid 2610 . . . . . 6 (LSubSp‘𝐷) = (LSubSp‘𝐷)
5 lcfrlem17.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 lcfrlem17.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lcfrlem17.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
85, 6, 7dvhlmod 35417 . . . . . 6 (𝜑𝑈 ∈ LMod)
9 lcfrlem37.g . . . . . 6 (𝜑𝐺 ∈ (LSubSp‘𝐷))
10 lcfrlem17.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
11 lcfrlem17.v . . . . . . 7 𝑉 = (Base‘𝑈)
12 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
13 lcfrlem24.t . . . . . . 7 · = ( ·𝑠𝑈)
14 lcfrlem24.s . . . . . . 7 𝑆 = (Scalar‘𝑈)
15 lcfrlem24.r . . . . . . 7 𝑅 = (Base‘𝑆)
16 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
17 eqid 2610 . . . . . . 7 (LFnl‘𝑈) = (LFnl‘𝑈)
18 lcfrlem24.l . . . . . . 7 𝐿 = (LKer‘𝑈)
19 eqid 2610 . . . . . . 7 (0g𝐷) = (0g𝐷)
20 eqid 2610 . . . . . . 7 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21 lcfrlem24.j . . . . . . 7 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem37.gs . . . . . . 7 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
23 lcfrlem37.e . . . . . . 7 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
24 lcfrlem37.xe . . . . . . . 8 (𝜑𝑋𝐸)
25 lcfrlem17.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
26 eldifsni 4261 . . . . . . . . 9 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
2725, 26syl 17 . . . . . . . 8 (𝜑𝑋0 )
28 eldifsn 4260 . . . . . . . 8 (𝑋 ∈ (𝐸 ∖ { 0 }) ↔ (𝑋𝐸𝑋0 ))
2924, 27, 28sylanbrc 695 . . . . . . 7 (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
305, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 29lcfrlem16 35865 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ 𝐺)
31 eqid 2610 . . . . . . 7 ( ·𝑠𝐷) = ( ·𝑠𝐷)
32 lcfrlem17.n . . . . . . . 8 𝑁 = (LSpan‘𝑈)
33 lcfrlem17.a . . . . . . . 8 𝐴 = (LSAtoms‘𝑈)
34 lcfrlem17.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
35 lcfrlem17.ne . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
36 lcfrlem22.b . . . . . . . 8 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
37 lcfrlem24.q . . . . . . . 8 𝑄 = (0g𝑆)
38 lcfrlem24.ib . . . . . . . 8 (𝜑𝐼𝐵)
39 lcfrlem28.jn . . . . . . . 8 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
40 lcfrlem29.i . . . . . . . 8 𝐹 = (invr𝑆)
415, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40lcfrlem29 35878 . . . . . . 7 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
42 lcfrlem37.ye . . . . . . . . 9 (𝜑𝑌𝐸)
43 eldifsni 4261 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4434, 43syl 17 . . . . . . . . 9 (𝜑𝑌0 )
45 eldifsn 4260 . . . . . . . . 9 (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌𝐸𝑌0 ))
4642, 44, 45sylanbrc 695 . . . . . . . 8 (𝜑𝑌 ∈ (𝐸 ∖ { 0 }))
475, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 46lcfrlem16 35865 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ 𝐺)
4814, 15, 2, 31, 4, 8, 9, 41, 47ldualssvscl 33463 . . . . . 6 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ 𝐺)
492, 3, 4, 8, 9, 30, 48ldualssvsubcl 33464 . . . . 5 (𝜑 → ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) ∈ 𝐺)
501, 49syl5eqel 2692 . . . 4 (𝜑𝐶𝐺)
515, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40, 3, 1lcfrlem36 35885 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
52 fveq2 6103 . . . . . . 7 (𝑔 = 𝐶 → (𝐿𝑔) = (𝐿𝐶))
5352fveq2d 6107 . . . . . 6 (𝑔 = 𝐶 → ( ‘(𝐿𝑔)) = ( ‘(𝐿𝐶)))
5453eleq2d 2673 . . . . 5 (𝑔 = 𝐶 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))))
5554rspcev 3282 . . . 4 ((𝐶𝐺 ∧ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5650, 51, 55syl2anc 691 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
57 eliun 4460 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5856, 57sylibr 223 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5958, 23syl6eleqr 2699 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  cdif 3537  cin 3539  wss 3540  {csn 4125  {cpr 4127   ciun 4455  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  -gcsg 17247  invrcinvr 18494  LSubSpclss 18753  LSpanclspn 18792  LSAtomsclsa 33279  LFnlclfn 33362  LKerclk 33390  LDualcld 33428  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  ocHcoch 35654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lcv 33324  df-lfl 33363  df-lkr 33391  df-ldual 33429  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702
This theorem is referenced by:  lcfrlem38  35887
  Copyright terms: Public domain W3C validator