Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslcic Structured version   Visualization version   GIF version

Theorem lbslcic 19999
 Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lbslcic.f 𝐹 = (Scalar‘𝑊)
lbslcic.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslcic ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))

Proof of Theorem lbslcic
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1056 . . 3 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼𝐵)
2 bren 7850 . . 3 (𝐼𝐵 ↔ ∃𝑒 𝑒:𝐼1-1-onto𝐵)
31, 2sylib 207 . 2 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ∃𝑒 𝑒:𝐼1-1-onto𝐵)
4 eqid 2610 . . . 4 (𝐹 freeLMod 𝐼) = (𝐹 freeLMod 𝐼)
5 eqid 2610 . . . 4 (Base‘(𝐹 freeLMod 𝐼)) = (Base‘(𝐹 freeLMod 𝐼))
6 eqid 2610 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2610 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2610 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
9 eqid 2610 . . . 4 (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) = (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒)))
10 simpl1 1057 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊 ∈ LMod)
11 relen 7846 . . . . . . 7 Rel ≈
1211brrelexi 5082 . . . . . 6 (𝐼𝐵𝐼 ∈ V)
13123ad2ant3 1077 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼 ∈ V)
1413adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐼 ∈ V)
15 lbslcic.f . . . . 5 𝐹 = (Scalar‘𝑊)
1615a1i 11 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐹 = (Scalar‘𝑊))
17 f1ofo 6057 . . . . 5 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼onto𝐵)
1817adantl 481 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼onto𝐵)
19 lbslcic.j . . . . . . . . 9 𝐽 = (LBasis‘𝑊)
2019lbslinds 19991 . . . . . . . 8 𝐽 ⊆ (LIndS‘𝑊)
2120sseli 3564 . . . . . . 7 (𝐵𝐽𝐵 ∈ (LIndS‘𝑊))
22213ad2ant2 1076 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐵 ∈ (LIndS‘𝑊))
2322adantr 480 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐵 ∈ (LIndS‘𝑊))
24 f1of1 6049 . . . . . 6 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼1-1𝐵)
2524adantl 481 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼1-1𝐵)
26 f1linds 19983 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ 𝑒:𝐼1-1𝐵) → 𝑒 LIndF 𝑊)
2710, 23, 25, 26syl3anc 1318 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒 LIndF 𝑊)
286, 19, 8lbssp 18900 . . . . . 6 (𝐵𝐽 → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
29283ad2ant2 1076 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
3029adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
314, 5, 6, 7, 8, 9, 10, 14, 16, 18, 27, 30indlcim 19998 . . 3 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊))
32 lmimcnv 18888 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)))
33 brlmici 18890 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
3431, 32, 333syl 18 . 2 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
353, 34exlimddv 1850 1 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583   ↦ cmpt 4643  ◡ccnv 5037  –1-1→wf1 5801  –onto→wfo 5802  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   ≈ cen 7838  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772   Σg cgsu 15924  LModclmod 18686  LSpanclspn 18792   LMIso clmim 18841   ≃𝑚 clmic 18842  LBasisclbs 18895   freeLMod cfrlm 19909   LIndF clindf 19962  LIndSclinds 19963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lmhm 18843  df-lmim 18844  df-lmic 18845  df-lbs 18896  df-sra 18993  df-rgmod 18994  df-nzr 19079  df-dsmm 19895  df-frlm 19910  df-uvc 19941  df-lindf 19964  df-linds 19965 This theorem is referenced by:  lmisfree  20000  frlmisfrlm  20006
 Copyright terms: Public domain W3C validator