MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcoslem1 Structured version   Visualization version   GIF version

Theorem lawcoslem1 24345
Description: Lemma for lawcos 24346. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.)
Hypotheses
Ref Expression
lawcoslem1.1 (𝜑𝑈 ∈ ℂ)
lawcoslem1.2 (𝜑𝑉 ∈ ℂ)
lawcoslem1.3 (𝜑𝑈 ≠ 0)
lawcoslem1.4 (𝜑𝑉 ≠ 0)
Assertion
Ref Expression
lawcoslem1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))

Proof of Theorem lawcoslem1
StepHypRef Expression
1 lawcoslem1.1 . . 3 (𝜑𝑈 ∈ ℂ)
2 lawcoslem1.2 . . 3 (𝜑𝑉 ∈ ℂ)
3 sqabssub 13871 . . 3 ((𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ) → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
41, 2, 3syl2anc 691 . 2 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
5 lawcoslem1.4 . . . . . . . . 9 (𝜑𝑉 ≠ 0)
61, 2, 5absdivd 14042 . . . . . . . 8 (𝜑 → (abs‘(𝑈 / 𝑉)) = ((abs‘𝑈) / (abs‘𝑉)))
76oveq2d 6565 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))) = ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
87oveq2d 6565 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
91abscld 14023 . . . . . . . . 9 (𝜑 → (abs‘𝑈) ∈ ℝ)
102abscld 14023 . . . . . . . . 9 (𝜑 → (abs‘𝑉) ∈ ℝ)
119, 10remulcld 9949 . . . . . . . 8 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℝ)
1211recnd 9947 . . . . . . 7 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℂ)
131, 2, 5divcld 10680 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑉) ∈ ℂ)
1413recld 13782 . . . . . . . 8 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℝ)
1514recnd 9947 . . . . . . 7 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℂ)
169recnd 9947 . . . . . . . 8 (𝜑 → (abs‘𝑈) ∈ ℂ)
1710recnd 9947 . . . . . . . 8 (𝜑 → (abs‘𝑉) ∈ ℂ)
182, 5absne0d 14034 . . . . . . . 8 (𝜑 → (abs‘𝑉) ≠ 0)
1916, 17, 18divcld 10680 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ∈ ℂ)
20 lawcoslem1.3 . . . . . . . . 9 (𝜑𝑈 ≠ 0)
211, 20absne0d 14034 . . . . . . . 8 (𝜑 → (abs‘𝑈) ≠ 0)
2216, 17, 21, 18divne0d 10696 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ≠ 0)
2312, 15, 19, 22div12d 10716 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
248, 23eqtrd 2644 . . . . 5 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
2512, 16, 17, 21, 18divdiv2d 10712 . . . . . . 7 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
2617sqvald 12867 . . . . . . . . . 10 (𝜑 → ((abs‘𝑉)↑2) = ((abs‘𝑉) · (abs‘𝑉)))
2726oveq1d 6564 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2816, 17, 17mul31d 10126 . . . . . . . . 9 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2927, 28eqtr4d 2647 . . . . . . . 8 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)))
3029oveq1d 6564 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
3117sqcld 12868 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℂ)
3231, 16, 21divcan4d 10686 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((abs‘𝑉)↑2))
3325, 30, 323eqtr2rd 2651 . . . . . 6 (𝜑 → ((abs‘𝑉)↑2) = (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
3433oveq2d 6565 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
3515, 31mulcomd 9940 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3610resqcld 12897 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℝ)
3736, 13remul2d 13815 . . . . . . 7 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3835, 37eqtr4d 2647 . . . . . 6 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))))
391, 31, 2, 5div12d 10716 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (((abs‘𝑉)↑2) · (𝑈 / 𝑉)))
4031, 2, 5divrecd 10683 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (((abs‘𝑉)↑2) · (1 / 𝑉)))
41 recval 13910 . . . . . . . . . . . . 13 ((𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
422, 5, 41syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
4342oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))))
442cjcld 13784 . . . . . . . . . . . 12 (𝜑 → (∗‘𝑉) ∈ ℂ)
45 sqne0 12792 . . . . . . . . . . . . . 14 ((abs‘𝑉) ∈ ℂ → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4617, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4718, 46mpbird 246 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑉)↑2) ≠ 0)
4844, 31, 47divcan2d 10682 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))) = (∗‘𝑉))
4943, 48eqtrd 2644 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (∗‘𝑉))
5040, 49eqtrd 2644 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (∗‘𝑉))
5150oveq2d 6565 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (𝑈 · (∗‘𝑉)))
5239, 51eqtr3d 2646 . . . . . . 7 (𝜑 → (((abs‘𝑉)↑2) · (𝑈 / 𝑉)) = (𝑈 · (∗‘𝑉)))
5352fveq2d 6107 . . . . . 6 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (ℜ‘(𝑈 · (∗‘𝑉))))
5438, 53eqtrd 2644 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(𝑈 · (∗‘𝑉))))
5524, 34, 543eqtr2rd 2651 . . . 4 (𝜑 → (ℜ‘(𝑈 · (∗‘𝑉))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))
5655oveq2d 6565 . . 3 (𝜑 → (2 · (ℜ‘(𝑈 · (∗‘𝑉)))) = (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))))))
5756oveq2d 6565 . 2 (𝜑 → ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
584, 57eqtrd 2644 1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  2c2 10947  cexp 12722  ccj 13684  cre 13685  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  lawcos  24346
  Copyright terms: Public domain W3C validator