Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latdisd | Structured version Visualization version GIF version |
Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
latdisd.b | ⊢ 𝐵 = (Base‘𝐾) |
latdisd.j | ⊢ ∨ = (join‘𝐾) |
latdisd.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latdisd | ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latdisd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latdisd.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | latdisd.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latdisdlem 17012 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
5 | eqid 2610 | . . . . 5 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
6 | 5 | odulat 16968 | . . . 4 ⊢ (𝐾 ∈ Lat → (ODual‘𝐾) ∈ Lat) |
7 | 5, 1 | odubas 16956 | . . . . 5 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
8 | 5, 3 | odujoin 16965 | . . . . 5 ⊢ ∧ = (join‘(ODual‘𝐾)) |
9 | 5, 2 | odumeet 16963 | . . . . 5 ⊢ ∨ = (meet‘(ODual‘𝐾)) |
10 | 7, 8, 9 | latdisdlem 17012 | . . . 4 ⊢ ((ODual‘𝐾) ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
12 | 4, 11 | impbid 201 | . 2 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
13 | oveq1 6556 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑣 ∨ 𝑤))) | |
14 | oveq1 6556 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑣) = (𝑥 ∧ 𝑣)) | |
15 | oveq1 6556 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑤) = (𝑥 ∧ 𝑤)) | |
16 | 14, 15 | oveq12d 6567 | . . . 4 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤))) |
17 | 13, 16 | eqeq12d 2625 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)))) |
18 | oveq1 6556 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑣 ∨ 𝑤) = (𝑦 ∨ 𝑤)) | |
19 | 18 | oveq2d 6565 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑤))) |
20 | oveq2 6557 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ 𝑣) = (𝑥 ∧ 𝑦)) | |
21 | 20 | oveq1d 6564 | . . . 4 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤))) |
22 | 19, 21 | eqeq12d 2625 | . . 3 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)))) |
23 | oveq2 6557 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑦 ∨ 𝑤) = (𝑦 ∨ 𝑧)) | |
24 | 23 | oveq2d 6565 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ (𝑦 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
25 | oveq2 6557 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ 𝑤) = (𝑥 ∧ 𝑧)) | |
26 | 25 | oveq2d 6565 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
27 | 24, 26 | eqeq12d 2625 | . . 3 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
28 | 17, 22, 27 | cbvral3v 3157 | . 2 ⊢ (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
29 | 12, 28 | syl6bb 275 | 1 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 joincjn 16767 meetcmee 16768 Latclat 16868 ODualcodu 16951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-dec 11370 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ple 15788 df-preset 16751 df-poset 16769 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-lat 16869 df-odu 16952 |
This theorem is referenced by: odudlatb 17019 |
Copyright terms: Public domain | W3C validator |