Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latabs1 | Structured version Visualization version GIF version |
Description: Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs1 27759 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latabs1.b | ⊢ 𝐵 = (Base‘𝐾) |
latabs1.j | ⊢ ∨ = (join‘𝐾) |
latabs1.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latabs1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latabs1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2610 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | latabs1.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latmle1 16899 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌)(le‘𝐾)𝑋) |
5 | 1, 3 | latmcl 16875 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
6 | latabs1.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
7 | 1, 2, 6 | latleeqj2 16887 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
8 | 7 | 3com23 1263 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
9 | 5, 8 | syld3an3 1363 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
10 | 4, 9 | mpbid 221 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 lecple 15775 joincjn 16767 meetcmee 16768 Latclat 16868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-preset 16751 df-poset 16769 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-lat 16869 |
This theorem is referenced by: latdisdlem 17012 cvrexchlem 33723 |
Copyright terms: Public domain | W3C validator |