Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg Structured version   Visualization version   GIF version

Theorem lagsubg 17479
 Description: Lagrange theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
lagsubg ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝑌) ∥ (#‘𝑋))

Proof of Theorem lagsubg
StepHypRef Expression
1 simpr 476 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 pwfi 8144 . . . . . . 7 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 207 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin)
4 lagsubg.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
5 eqid 2610 . . . . . . . . 9 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
64, 5eqger 17467 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋)
76adantr 480 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝐺 ~QG 𝑌) Er 𝑋)
87qsss 7695 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ⊆ 𝒫 𝑋)
9 ssfi 8065 . . . . . 6 ((𝒫 𝑋 ∈ Fin ∧ (𝑋 / (𝐺 ~QG 𝑌)) ⊆ 𝒫 𝑋) → (𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin)
103, 8, 9syl2anc 691 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin)
11 hashcl 13009 . . . . 5 ((𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin → (#‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0)
1210, 11syl 17 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0)
1312nn0zd 11356 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ)
14 id 22 . . . . . 6 (𝑋 ∈ Fin → 𝑋 ∈ Fin)
154subgss 17418 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
16 ssfi 8065 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌𝑋) → 𝑌 ∈ Fin)
1714, 15, 16syl2anr 494 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ Fin)
18 hashcl 13009 . . . . 5 (𝑌 ∈ Fin → (#‘𝑌) ∈ ℕ0)
1917, 18syl 17 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝑌) ∈ ℕ0)
2019nn0zd 11356 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝑌) ∈ ℤ)
21 dvdsmul2 14842 . . 3 (((#‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ ∧ (#‘𝑌) ∈ ℤ) → (#‘𝑌) ∥ ((#‘(𝑋 / (𝐺 ~QG 𝑌))) · (#‘𝑌)))
2213, 20, 21syl2anc 691 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝑌) ∥ ((#‘(𝑋 / (𝐺 ~QG 𝑌))) · (#‘𝑌)))
23 simpl 472 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ (SubGrp‘𝐺))
244, 5, 23, 1lagsubg2 17478 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝑋) = ((#‘(𝑋 / (𝐺 ~QG 𝑌))) · (#‘𝑌)))
2522, 24breqtrrd 4611 1 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (#‘𝑌) ∥ (#‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  𝒫 cpw 4108   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   Er wer 7626   / cqs 7628  Fincfn 7841   · cmul 9820  ℕ0cn0 11169  ℤcz 11254  #chash 12979   ∥ cdvds 14821  Basecbs 15695  SubGrpcsubg 17411   ~QG cqg 17413 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-eqg 17416 This theorem is referenced by:  oddvds2  17806  fislw  17863  sylow3lem4  17868  ablfacrp2  18289  ablfac1c  18293  ablfac1eu  18295
 Copyright terms: Public domain W3C validator