MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqreglem2 Structured version   Visualization version   GIF version

Theorem kqreglem2 21355
Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqreglem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqreglem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 20541 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Top)
3 simplr 788 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (KQ‘𝐽) ∈ Reg)
4 simpll 786 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 790 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 21347 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 691 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 792 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑧)
10 toponss 20544 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
114, 5, 10syl2anc 691 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑧𝑋)
1211, 9sseldd 3569 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → 𝑤𝑋)
136kqfvima 21343 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽𝑤𝑋) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
144, 5, 12, 13syl3anc 1318 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝑤𝑧 ↔ (𝐹𝑤) ∈ (𝐹𝑧)))
159, 14mpbid 221 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → (𝐹𝑤) ∈ (𝐹𝑧))
16 regsep 20948 . . . . 5 (((KQ‘𝐽) ∈ Reg ∧ (𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (𝐹𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
173, 8, 15, 16syl3anc 1318 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))
184adantr 480 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
196kqid 21341 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2018, 19syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
21 simprl 790 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ∈ (KQ‘𝐽))
22 cnima 20879 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑛 ∈ (KQ‘𝐽)) → (𝐹𝑛) ∈ 𝐽)
2320, 21, 22syl2anc 691 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ∈ 𝐽)
2412adantr 480 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤𝑋)
25 simprrl 800 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ∈ 𝑛)
266kqffn 21338 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 elpreima 6245 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2818, 26, 273syl 18 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝑤 ∈ (𝐹𝑛) ↔ (𝑤𝑋 ∧ (𝐹𝑤) ∈ 𝑛)))
2924, 25, 28mpbir2and 959 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (𝐹𝑛))
306kqtopon 21340 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
31 topontop 20541 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
3218, 30, 313syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
33 elssuni 4403 . . . . . . . . . 10 (𝑛 ∈ (KQ‘𝐽) → 𝑛 (KQ‘𝐽))
3433ad2antrl 760 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 (KQ‘𝐽))
35 eqid 2610 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
3635clscld 20661 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
3732, 34, 36syl2anc 691 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽)))
38 cnclima 20882 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑛) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
3920, 37, 38syl2anc 691 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽))
4035sscls 20670 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑛 (KQ‘𝐽)) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
4132, 34, 40syl2anc 691 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛))
42 imass2 5420 . . . . . . . 8 (𝑛 ⊆ ((cls‘(KQ‘𝐽))‘𝑛) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4341, 42syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
44 eqid 2610 . . . . . . . 8 𝐽 = 𝐽
4544clsss2 20686 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑛) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
4639, 43, 45syl2anc 691 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)))
47 simprrr 801 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧))
48 imass2 5420 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
4947, 48syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ (𝐹 “ (𝐹𝑧)))
505adantr 480 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
516kqsat 21344 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5218, 50, 51syl2anc 691 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
5349, 52sseqtrd 3604 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑛)) ⊆ 𝑧)
5446, 53sstrd 3578 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)
55 eleq2 2677 . . . . . . 7 (𝑚 = (𝐹𝑛) → (𝑤𝑚𝑤 ∈ (𝐹𝑛)))
56 fveq2 6103 . . . . . . . 8 (𝑚 = (𝐹𝑛) → ((cls‘𝐽)‘𝑚) = ((cls‘𝐽)‘(𝐹𝑛)))
5756sseq1d 3595 . . . . . . 7 (𝑚 = (𝐹𝑛) → (((cls‘𝐽)‘𝑚) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧))
5855, 57anbi12d 743 . . . . . 6 (𝑚 = (𝐹𝑛) → ((𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧) ↔ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)))
5958rspcev 3282 . . . . 5 (((𝐹𝑛) ∈ 𝐽 ∧ (𝑤 ∈ (𝐹𝑛) ∧ ((cls‘𝐽)‘(𝐹𝑛)) ⊆ 𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6023, 29, 54, 59syl12anc 1316 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) ∧ (𝑛 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ∈ 𝑛 ∧ ((cls‘(KQ‘𝐽))‘𝑛) ⊆ (𝐹𝑧)))) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6117, 60rexlimddv 3017 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) ∧ (𝑧𝐽𝑤𝑧)) → ∃𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
6261ralrimivva 2954 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧))
63 isreg 20946 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤𝑧𝑚𝐽 (𝑤𝑚 ∧ ((cls‘𝐽)‘𝑚) ⊆ 𝑧)))
642, 62, 63sylanbrc 695 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  wss 3540   cuni 4372  cmpt 4643  ccnv 5037  ran crn 5039  cima 5041   Fn wfn 5799  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518  Clsdccld 20630  clsccl 20632   Cn ccn 20838  Regcreg 20923  KQckq 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-qtop 15990  df-top 20521  df-topon 20523  df-cld 20633  df-cls 20635  df-cn 20841  df-reg 20930  df-kq 21307
This theorem is referenced by:  kqreg  21364
  Copyright terms: Public domain W3C validator