Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem22 Structured version   Visualization version   GIF version

Theorem knoppndvlem22 31694
Description: Lemma for knoppndv 31695. (Contributed by Asger C. Ipsen, 19-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem22.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem22.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem22.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem22.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem22.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem22.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem22.h (𝜑𝐻 ∈ ℝ)
knoppndvlem22.n (𝜑𝑁 ∈ ℕ)
knoppndvlem22.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem22 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑤,𝑦   𝐷,𝑎,𝑏   𝐷,𝑖,𝑛,𝑤,𝑦   𝐸,𝑎,𝑏   𝑖,𝐸,𝑛,𝑤,𝑦   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁,𝑖,𝑤   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑎,𝑏)   𝐷(𝑥)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem22
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem22.c . . 3 (𝜑𝐶 ∈ (-1(,)1))
2 knoppndvlem22.n . . 3 (𝜑𝑁 ∈ ℕ)
3 knoppndvlem22.d . . 3 (𝜑𝐷 ∈ ℝ+)
4 knoppndvlem22.e . . 3 (𝜑𝐸 ∈ ℝ+)
5 knoppndvlem22.1 . . . 4 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
61, 2, 5knoppndvlem20 31692 . . 3 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
71, 2, 3, 4, 6, 5knoppndvlem18 31690 . 2 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))
8 knoppndvlem22.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
9 knoppndvlem22.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
10 knoppndvlem22.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
11 eqid 2610 . . 3 (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
121adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐶 ∈ (-1(,)1))
133adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐷 ∈ ℝ+)
144adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ∈ ℝ+)
15 knoppndvlem22.h . . . 4 (𝜑𝐻 ∈ ℝ)
1615adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐻 ∈ ℝ)
17 simprl 790 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑗 ∈ ℕ0)
182adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑁 ∈ ℕ)
195adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 1 < (𝑁 · (abs‘𝐶)))
20 simprrl 800 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
21 simprrr 801 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
228, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21knoppndvlem21 31693 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
237, 22rexlimddv 3017 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  +crp 11708  (,)cioo 12046  cfl 12453  cexp 12722  abscabs 13822  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ulm 23935
This theorem is referenced by:  knoppndv  31695
  Copyright terms: Public domain W3C validator