Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem21 Structured version   Visualization version   GIF version

Theorem knoppndvlem21 31693
Description: Lemma for knoppndv 31695. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem21.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem21.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem21.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem21.g 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
knoppndvlem21.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem21.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem21.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem21.h (𝜑𝐻 ∈ ℝ)
knoppndvlem21.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem21.n (𝜑𝑁 ∈ ℕ)
knoppndvlem21.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
knoppndvlem21.2 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
knoppndvlem21.3 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
Assertion
Ref Expression
knoppndvlem21 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑦   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝐽,𝑎,𝑏   𝑖,𝐽,𝑛,𝑤,𝑦   𝑥,𝐽,𝑖,𝑤   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑤,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐺(𝑥,𝑦,𝑤,𝑖,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem21
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2 eqid 2610 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3 knoppndvlem21.j . . 3 (𝜑𝐽 ∈ ℕ0)
4 knoppndvlem21.h . . 3 (𝜑𝐻 ∈ ℝ)
5 knoppndvlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5knoppndvlem19 31691 . 2 (𝜑 → ∃𝑚 ∈ ℤ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
7 2re 10967 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
95nnred 10912 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
108, 9remulcld 9949 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
11 2pos 10989 . . . . . . . . . . . 12 0 < 2
1211a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
135nngt0d 10941 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
148, 9, 12, 13mulgt0d 10071 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1514gt0ne0d 10471 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
163nn0zd 11356 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
1716znegcld 11360 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
1810, 15, 17reexpclzd 12896 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
1918rehalfcld 11156 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
2019adantr 480 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
21 simpr 476 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
2221zred 11358 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℝ)
2320, 22remulcld 9949 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
2423adantrr 749 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
25 peano2re 10088 . . . . . . . 8 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (𝑚 + 1) ∈ ℝ)
2720, 26jca 553 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ))
28 remulcl 9900 . . . . . 6 (((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
2927, 28syl 17 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
3029adantrr 749 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
31 simprr 792 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
323adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐽 ∈ ℕ0)
335adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
341, 2, 32, 21, 33knoppndvlem16 31688 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((2 · 𝑁)↑-𝐽) / 2))
35 knoppndvlem21.2 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3635adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3734, 36eqbrtrd 4605 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷)
3810, 17, 143jca 1235 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
39 expgt0 12755 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
4118, 8, 40, 12divgt0d 10838 . . . . . . . . . . 11 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4241adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4334eqcomd 2616 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4442, 43breqtrd 4609 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4523, 29posdifd 10493 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ↔ 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
4644, 45mpbird 246 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4723, 46ltned 10052 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4837, 47jca 553 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
4948adantrr 749 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
50 knoppndvlem21.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
5150rpred 11748 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
5251adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ∈ ℝ)
53 knoppndvlem21.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (-1(,)1))
5453knoppndvlem3 31675 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
5554simpld 474 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5655recnd 9947 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
5756abscld 14023 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
5810, 57remulcld 9949 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
5958, 3reexpcld 12887 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
60 knoppndvlem21.g . . . . . . . . . . 11 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
6160a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
62 knoppndvlem21.1 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
6353, 5, 62knoppndvlem20 31692 . . . . . . . . . . 11 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
6463rpred 11748 . . . . . . . . . 10 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6561, 64eqeltrd 2688 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
6659, 65remulcld 9949 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
6766adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
68 knoppndvlem21.t . . . . . . . . . . 11 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
69 knoppndvlem21.f . . . . . . . . . . 11 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
70 knoppndvlem21.w . . . . . . . . . . 11 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
7155adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ ℝ)
7254simprd 478 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) < 1)
7372adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → (abs‘𝐶) < 1)
7468, 69, 70, 29, 33, 71, 73knoppcld 31665 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∈ ℂ)
7568, 69, 70, 23, 33, 71, 73knoppcld 31665 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℂ)
7674, 75subcld 10271 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → ((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℂ)
7776abscld 14023 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ∈ ℝ)
7834, 20eqeltrd 2688 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℝ)
7944gt0ne0d 10471 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ≠ 0)
8077, 78, 79redivcld 10732 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℝ)
81 knoppndvlem21.3 . . . . . . . 8 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8281adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8360oveq2i 6560 . . . . . . . . 9 ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
8483a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8553adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ (-1(,)1))
8662adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 1 < (𝑁 · (abs‘𝐶)))
8768, 69, 70, 1, 2, 85, 32, 21, 33, 86knoppndvlem17 31689 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8884, 87eqbrtrd 4605 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8952, 67, 80, 82, 88letrd 10073 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9089adantrr 749 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9131, 49, 903jca 1235 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
9224, 30, 913jca 1235 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
93 breq1 4586 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻))
9493anbi1d 737 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑎𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏)))
95 oveq2 6557 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑏𝑎) = (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
9695breq1d 4593 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑏𝑎) < 𝐷 ↔ (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
97 neeq1 2844 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏))
9896, 97anbi12d 743 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑏𝑎) < 𝐷𝑎𝑏) ↔ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏)))
99 fveq2 6103 . . . . . . . . 9 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑊𝑎) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
10099oveq2d 6565 . . . . . . . 8 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑊𝑏) − (𝑊𝑎)) = ((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
101100fveq2d 6107 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (abs‘((𝑊𝑏) − (𝑊𝑎))) = (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
102101, 95oveq12d 6567 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) = ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
103102breq2d 4595 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) ↔ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
10494, 98, 1033anbi123d 1391 . . . 4 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
105 breq2 4587 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐻𝑏𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
106105anbi2d 736 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
107 oveq1 6556 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
108107breq1d 4593 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
109 neeq2 2845 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
110108, 109anbi12d 743 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
111 fveq2 6103 . . . . . . . . 9 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑊𝑏) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
112111oveq1d 6564 . . . . . . . 8 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) = ((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
113112fveq2d 6107 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) = (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
114113, 107oveq12d 6567 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) = ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
115114breq2d 4595 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ↔ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
116106, 110, 1153anbi123d 1391 . . . 4 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
117104, 116rspc2ev 3295 . . 3 ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
11892, 117syl 17 . 2 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
1196, 118rexlimddv 3017 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  +crp 11708  (,)cioo 12046  cfl 12453  cexp 12722  abscabs 13822  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ulm 23935
This theorem is referenced by:  knoppndvlem22  31694
  Copyright terms: Public domain W3C validator