Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem2 Structured version   Visualization version   GIF version

Theorem knoppcnlem2 31654
Description: Lemma for knoppcn 31664. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem2.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem2.n (𝜑𝑁 ∈ ℕ)
knoppcnlem2.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem2.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem2.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem2 (𝜑 → ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)

Proof of Theorem knoppcnlem2
StepHypRef Expression
1 knoppcnlem2.1 . . 3 (𝜑𝐶 ∈ ℝ)
2 knoppcnlem2.3 . . 3 (𝜑𝑀 ∈ ℕ0)
31, 2reexpcld 12887 . 2 (𝜑 → (𝐶𝑀) ∈ ℝ)
4 knoppcnlem2.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5 2re 10967 . . . . . . 7 2 ∈ ℝ
65a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
7 knoppcnlem2.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
8 nnre 10904 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
97, 8syl 17 . . . . . 6 (𝜑𝑁 ∈ ℝ)
106, 9remulcld 9949 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ)
1110, 2reexpcld 12887 . . . 4 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
12 knoppcnlem2.2 . . . 4 (𝜑𝐴 ∈ ℝ)
1311, 12remulcld 9949 . . 3 (𝜑 → (((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ)
144, 13dnicld2 31633 . 2 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
153, 14remulcld 9949 1 (𝜑 → ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cfl 12453  cexp 12722  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  knoppcnlem3  31655
  Copyright terms: Public domain W3C validator