Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem14 Structured version   Visualization version   GIF version

Theorem kmlem14 8868
 Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.)
Hypotheses
Ref Expression
kmlem14.1 (𝜑 ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))
kmlem14.2 (𝜓 ↔ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))
kmlem14.3 (𝜒 ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
Assertion
Ref Expression
kmlem14 (∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑦𝑧𝑣𝑢(𝑦𝑥𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem kmlem14
StepHypRef Expression
1 neeq1 2844 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝑤𝑦𝑤))
2 ineq1 3769 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑤) = (𝑦𝑤))
32eleq2d 2673 . . . . . 6 (𝑧 = 𝑦 → (𝑣 ∈ (𝑧𝑤) ↔ 𝑣 ∈ (𝑦𝑤)))
41, 3anbi12d 743 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ (𝑦𝑤𝑣 ∈ (𝑦𝑤))))
54rexbidv 3034 . . . 4 (𝑧 = 𝑦 → (∃𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤))))
65raleqbi1dv 3123 . . 3 (𝑧 = 𝑦 → (∀𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ∀𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤))))
76cbvrexv 3148 . 2 (∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑦𝑥𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤)))
8 df-rex 2902 . 2 (∃𝑦𝑥𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤)) ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤))))
9 eleq1 2676 . . . . . . . . 9 (𝑣 = 𝑧 → (𝑣 ∈ (𝑦𝑤) ↔ 𝑧 ∈ (𝑦𝑤)))
109anbi2d 736 . . . . . . . 8 (𝑣 = 𝑧 → ((𝑦𝑤𝑣 ∈ (𝑦𝑤)) ↔ (𝑦𝑤𝑧 ∈ (𝑦𝑤))))
1110rexbidv 3034 . . . . . . 7 (𝑣 = 𝑧 → (∃𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤)) ↔ ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤))))
1211cbvralv 3147 . . . . . 6 (∀𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤)) ↔ ∀𝑧𝑦𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)))
13 df-ral 2901 . . . . . 6 (∀𝑧𝑦𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)) ↔ ∀𝑧(𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤))))
1412, 13bitri 263 . . . . 5 (∀𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤)) ↔ ∀𝑧(𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤))))
1514anbi2i 726 . . . 4 ((𝑦𝑥 ∧ ∀𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤))) ↔ (𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)))))
16 19.28v 1896 . . . 4 (∀𝑧(𝑦𝑥 ∧ (𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)))) ↔ (𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)))))
17 neeq2 2845 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝑦𝑤𝑦𝑣))
18 ineq2 3770 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → (𝑦𝑤) = (𝑦𝑣))
1918eleq2d 2673 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝑧 ∈ (𝑦𝑤) ↔ 𝑧 ∈ (𝑦𝑣)))
2017, 19anbi12d 743 . . . . . . . . . . 11 (𝑤 = 𝑣 → ((𝑦𝑤𝑧 ∈ (𝑦𝑤)) ↔ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))
2120cbvrexv 3148 . . . . . . . . . 10 (∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)) ↔ ∃𝑣𝑥 (𝑦𝑣𝑧 ∈ (𝑦𝑣)))
22 df-rex 2902 . . . . . . . . . 10 (∃𝑣𝑥 (𝑦𝑣𝑧 ∈ (𝑦𝑣)) ↔ ∃𝑣(𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))
2321, 22bitri 263 . . . . . . . . 9 (∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)) ↔ ∃𝑣(𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))
2423imbi2i 325 . . . . . . . 8 ((𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤))) ↔ (𝑧𝑦 → ∃𝑣(𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣)))))
25 19.37v 1897 . . . . . . . 8 (∃𝑣(𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣)))) ↔ (𝑧𝑦 → ∃𝑣(𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣)))))
2624, 25bitr4i 266 . . . . . . 7 ((𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤))) ↔ ∃𝑣(𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣)))))
2726anbi2i 726 . . . . . 6 ((𝑦𝑥 ∧ (𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)))) ↔ (𝑦𝑥 ∧ ∃𝑣(𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))))
28 19.42v 1905 . . . . . 6 (∃𝑣(𝑦𝑥 ∧ (𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))) ↔ (𝑦𝑥 ∧ ∃𝑣(𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))))
29 19.3v 1884 . . . . . . . 8 (∀𝑢(𝑦𝑥𝜑) ↔ (𝑦𝑥𝜑))
30 kmlem14.1 . . . . . . . . . 10 (𝜑 ↔ (𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)))
31 elin 3758 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑦𝑣) ↔ (𝑧𝑦𝑧𝑣))
3231baibr 943 . . . . . . . . . . . . 13 (𝑧𝑦 → (𝑧𝑣𝑧 ∈ (𝑦𝑣)))
3332anbi2d 736 . . . . . . . . . . . 12 (𝑧𝑦 → (((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣) ↔ ((𝑣𝑥𝑦𝑣) ∧ 𝑧 ∈ (𝑦𝑣))))
34 anass 679 . . . . . . . . . . . 12 (((𝑣𝑥𝑦𝑣) ∧ 𝑧 ∈ (𝑦𝑣)) ↔ (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))
3533, 34syl6bb 275 . . . . . . . . . . 11 (𝑧𝑦 → (((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣) ↔ (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣)))))
3635pm5.74i 259 . . . . . . . . . 10 ((𝑧𝑦 → ((𝑣𝑥𝑦𝑣) ∧ 𝑧𝑣)) ↔ (𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣)))))
3730, 36bitri 263 . . . . . . . . 9 (𝜑 ↔ (𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣)))))
3837anbi2i 726 . . . . . . . 8 ((𝑦𝑥𝜑) ↔ (𝑦𝑥 ∧ (𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))))
3929, 38bitr2i 264 . . . . . . 7 ((𝑦𝑥 ∧ (𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))) ↔ ∀𝑢(𝑦𝑥𝜑))
4039exbii 1764 . . . . . 6 (∃𝑣(𝑦𝑥 ∧ (𝑧𝑦 → (𝑣𝑥 ∧ (𝑦𝑣𝑧 ∈ (𝑦𝑣))))) ↔ ∃𝑣𝑢(𝑦𝑥𝜑))
4127, 28, 403bitr2i 287 . . . . 5 ((𝑦𝑥 ∧ (𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)))) ↔ ∃𝑣𝑢(𝑦𝑥𝜑))
4241albii 1737 . . . 4 (∀𝑧(𝑦𝑥 ∧ (𝑧𝑦 → ∃𝑤𝑥 (𝑦𝑤𝑧 ∈ (𝑦𝑤)))) ↔ ∀𝑧𝑣𝑢(𝑦𝑥𝜑))
4315, 16, 423bitr2i 287 . . 3 ((𝑦𝑥 ∧ ∀𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤))) ↔ ∀𝑧𝑣𝑢(𝑦𝑥𝜑))
4443exbii 1764 . 2 (∃𝑦(𝑦𝑥 ∧ ∀𝑣𝑦𝑤𝑥 (𝑦𝑤𝑣 ∈ (𝑦𝑤))) ↔ ∃𝑦𝑧𝑣𝑢(𝑦𝑥𝜑))
457, 8, 443bitri 285 1 (∃𝑧𝑥𝑣𝑧𝑤𝑥 (𝑧𝑤𝑣 ∈ (𝑧𝑤)) ↔ ∃𝑦𝑧𝑣𝑢(𝑦𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473  ∃wex 1695   ∈ wcel 1977  ∃!weu 2458   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ∩ cin 3539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547 This theorem is referenced by:  kmlem16  8870
 Copyright terms: Public domain W3C validator