HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass2 Structured version   Visualization version   GIF version

Theorem kbass2 28360
Description: Dirac bra-ket associative law (⟨𝐴𝐵⟩)⟨𝐶 ∣ = 𝐴 ∣ ( ∣ 𝐵 𝐶 ∣ ) i.e. the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))

Proof of Theorem kbass2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . . . 4 (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) ∈ V
2 eqid 2610 . . . 4 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
31, 2fnmpti 5935 . . 3 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ
4 bracl 28192 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
5 brafn 28190 . . . . . 6 (𝐶 ∈ ℋ → (bra‘𝐶): ℋ⟶ℂ)
6 hfmmval 27982 . . . . . 6 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
74, 5, 6syl2an 493 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
873impa 1251 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
98fneq1d 5895 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ ↔ (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ))
103, 9mpbiri 247 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ)
11 brafn 28190 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
12 kbop 28196 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
13 fco 5971 . . . . 5 (((bra‘𝐴): ℋ⟶ℂ ∧ (𝐵 ketbra 𝐶): ℋ⟶ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1411, 12, 13syl2an 493 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
15143impb 1252 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
16 ffn 5958 . . 3 (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)) Fn ℋ)
1715, 16syl 17 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)) Fn ℋ)
18 simpl1 1057 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
19 simpl2 1058 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
20 braval 28187 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
2118, 19, 20syl2anc 691 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
22 simpl3 1059 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
23 simpr 476 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
24 braval 28187 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2522, 23, 24syl2anc 691 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2621, 25oveq12d 6567 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
27 hicl 27321 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2819, 18, 27syl2anc 691 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2921, 28eqeltrd 2688 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
3022, 5syl 17 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (bra‘𝐶): ℋ⟶ℂ)
31 hfmval 27987 . . . 4 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
3229, 30, 23, 31syl3anc 1318 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
33 hicl 27321 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
3423, 22, 33syl2anc 691 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
35 ax-his3 27325 . . . . 5 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
3634, 19, 18, 35syl3anc 1318 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
37123adant1 1072 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
38 fvco3 6185 . . . . . 6 (((𝐵 ketbra 𝐶): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
3937, 38sylan 487 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
40 kbval 28197 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4119, 22, 23, 40syl3anc 1318 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4241fveq2d 6107 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)) = ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)))
43 hvmulcl 27254 . . . . . . 7 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
4434, 19, 43syl2anc 691 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
45 braval 28187 . . . . . 6 ((𝐴 ∈ ℋ ∧ ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4618, 44, 45syl2anc 691 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4739, 42, 463eqtrd 2648 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4828, 34mulcomd 9940 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
4936, 47, 483eqtr4d 2654 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
5026, 32, 493eqtr4d 2654 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥))
5110, 17, 50eqfnfvd 6222 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cmpt 4643  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813   · cmul 9820  chil 27160   · csm 27162   ·ih csp 27163   ·fn chft 27183  bracbr 27197   ketbra ck 27198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-mulcom 9879  ax-hilex 27240  ax-hfvmul 27246  ax-hfi 27320  ax-his3 27325
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-hfmul 27977  df-bra 28093  df-kb 28094
This theorem is referenced by:  kbass6  28364
  Copyright terms: Public domain W3C validator