Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004ss1 Structured version   Visualization version   GIF version

Theorem k0004ss1 37469
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004ss1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1))))
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004ss1
StepHypRef Expression
1 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
21k0004val 37468 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
3 simp2 1055 . . . 4 ((𝑁 ∈ ℕ0𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))))
43rabssdv 3645 . . 3 (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1} ⊆ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))))
52, 4eqsstrd 3602 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))))
6 reex 9906 . . 3 ℝ ∈ V
7 unitssre 12190 . . 3 (0[,]1) ⊆ ℝ
8 mapss 7786 . . 3 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1))))
96, 7, 8mp2an 704 . 2 ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1)))
105, 9syl6ss 3580 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540  cmpt 4643  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  0cn0 11169  [,]cicc 12049  ...cfz 12197  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-icc 12053  df-seq 12664  df-sum 14265
This theorem is referenced by:  k0004ss2  37470  k0004ss3  37471
  Copyright terms: Public domain W3C validator