MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval2lem Structured version   Visualization version   GIF version

Theorem joinval2lem 16831
Description: Lemma for joinval2 16832 and joineu 16833. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu into joinlem?
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
joinval2lem ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝑦,𝐾,𝑧   𝑦,   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑦)   (𝑦)   (𝑥,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem joinval2lem
StepHypRef Expression
1 breq1 4586 . . 3 (𝑦 = 𝑋 → (𝑦 𝑥𝑋 𝑥))
2 breq1 4586 . . 3 (𝑦 = 𝑌 → (𝑦 𝑥𝑌 𝑥))
31, 2ralprg 4181 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ↔ (𝑋 𝑥𝑌 𝑥)))
4 breq1 4586 . . . . 5 (𝑦 = 𝑋 → (𝑦 𝑧𝑋 𝑧))
5 breq1 4586 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
64, 5ralprg 4181 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧 ↔ (𝑋 𝑧𝑌 𝑧)))
76imbi1d 330 . . 3 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
87ralbidv 2969 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
93, 8anbi12d 743 1 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {cpr 4127   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  joincjn 16767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584
This theorem is referenced by:  joinval2  16832  joineu  16833
  Copyright terms: Public domain W3C validator