Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joinval2lem | Structured version Visualization version GIF version |
Description: Lemma for joinval2 16832 and joineu 16833. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu into joinlem? |
Ref | Expression |
---|---|
joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
joinval2.l | ⊢ ≤ = (le‘𝐾) |
joinval2.j | ⊢ ∨ = (join‘𝐾) |
joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
joinval2lem | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4586 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥)) | |
2 | breq1 4586 | . . 3 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑥 ↔ 𝑌 ≤ 𝑥)) | |
3 | 1, 2 | ralprg 4181 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ↔ (𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥))) |
4 | breq1 4586 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) | |
5 | breq1 4586 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) | |
6 | 4, 5 | ralprg 4181 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 ↔ (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
7 | 6 | imbi1d 330 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
8 | 7 | ralbidv 2969 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
9 | 3, 8 | anbi12d 743 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {cpr 4127 class class class wbr 4583 ‘cfv 5804 Basecbs 15695 lecple 15775 joincjn 16767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 |
This theorem is referenced by: joinval2 16832 joineu 16833 |
Copyright terms: Public domain | W3C validator |