Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27a Structured version   Visualization version   GIF version

Theorem jm2.27a 36590
Description: Lemma for jm2.27 36593. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1 (𝜑𝐴 ∈ (ℤ‘2))
jm2.27a2 (𝜑𝐵 ∈ ℕ)
jm2.27a3 (𝜑𝐶 ∈ ℕ)
jm2.27a4 (𝜑𝐷 ∈ ℕ0)
jm2.27a5 (𝜑𝐸 ∈ ℕ0)
jm2.27a6 (𝜑𝐹 ∈ ℕ0)
jm2.27a7 (𝜑𝐺 ∈ ℕ0)
jm2.27a8 (𝜑𝐻 ∈ ℕ0)
jm2.27a9 (𝜑𝐼 ∈ ℕ0)
jm2.27a10 (𝜑𝐽 ∈ ℕ0)
jm2.27a11 (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
jm2.27a12 (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
jm2.27a13 (𝜑𝐺 ∈ (ℤ‘2))
jm2.27a14 (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
jm2.27a15 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
jm2.27a16 (𝜑𝐹 ∥ (𝐺𝐴))
jm2.27a17 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
jm2.27a18 (𝜑𝐹 ∥ (𝐻𝐶))
jm2.27a19 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
jm2.27a20 (𝜑𝐵𝐶)
jm2.27a21 (𝜑𝑃 ∈ ℤ)
jm2.27a22 (𝜑𝐷 = (𝐴 Xrm 𝑃))
jm2.27a23 (𝜑𝐶 = (𝐴 Yrm 𝑃))
jm2.27a24 (𝜑𝑄 ∈ ℤ)
jm2.27a25 (𝜑𝐹 = (𝐴 Xrm 𝑄))
jm2.27a26 (𝜑𝐸 = (𝐴 Yrm 𝑄))
jm2.27a27 (𝜑𝑅 ∈ ℤ)
jm2.27a28 (𝜑𝐼 = (𝐺 Xrm 𝑅))
jm2.27a29 (𝜑𝐻 = (𝐺 Yrm 𝑅))
Assertion
Ref Expression
jm2.27a (𝜑𝐶 = (𝐴 Yrm 𝐵))

Proof of Theorem jm2.27a
StepHypRef Expression
1 jm2.27a23 . 2 (𝜑𝐶 = (𝐴 Yrm 𝑃))
2 2z 11286 . . . . . 6 2 ∈ ℤ
3 jm2.27a3 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
43nnzd 11357 . . . . . 6 (𝜑𝐶 ∈ ℤ)
5 zmulcl 11303 . . . . . 6 ((2 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (2 · 𝐶) ∈ ℤ)
62, 4, 5sylancr 694 . . . . 5 (𝜑 → (2 · 𝐶) ∈ ℤ)
7 jm2.27a2 . . . . . 6 (𝜑𝐵 ∈ ℕ)
87nnzd 11357 . . . . 5 (𝜑𝐵 ∈ ℤ)
9 jm2.27a27 . . . . 5 (𝜑𝑅 ∈ ℤ)
10 jm2.27a21 . . . . 5 (𝜑𝑃 ∈ ℤ)
11 jm2.27a8 . . . . . . . 8 (𝜑𝐻 ∈ ℕ0)
1211nn0zd 11356 . . . . . . 7 (𝜑𝐻 ∈ ℤ)
13 jm2.27a19 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
14 congsym 36553 . . . . . . . 8 ((((2 · 𝐶) ∈ ℤ ∧ 𝐻 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ (2 · 𝐶) ∥ (𝐻𝐵))) → (2 · 𝐶) ∥ (𝐵𝐻))
156, 12, 8, 13, 14syl22anc 1319 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (𝐵𝐻))
16 jm2.27a17 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
17 jm2.27a13 . . . . . . . . . 10 (𝜑𝐺 ∈ (ℤ‘2))
1811nn0ge0d 11231 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝐻)
19 rmy0 36512 . . . . . . . . . . . . . 14 (𝐺 ∈ (ℤ‘2) → (𝐺 Yrm 0) = 0)
2017, 19syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐺 Yrm 0) = 0)
21 jm2.27a29 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝐺 Yrm 𝑅))
2221eqcomd 2616 . . . . . . . . . . . . 13 (𝜑 → (𝐺 Yrm 𝑅) = 𝐻)
2318, 20, 223brtr4d 4615 . . . . . . . . . . . 12 (𝜑 → (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅))
24 0zd 11266 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
25 lermy 36540 . . . . . . . . . . . . 13 ((𝐺 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)))
2617, 24, 9, 25syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)))
2723, 26mpbird 246 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑅)
28 elnn0z 11267 . . . . . . . . . . 11 (𝑅 ∈ ℕ0 ↔ (𝑅 ∈ ℤ ∧ 0 ≤ 𝑅))
299, 27, 28sylanbrc 695 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ0)
30 jm2.16nn0 36589 . . . . . . . . . 10 ((𝐺 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℕ0) → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅))
3117, 29, 30syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅))
3221oveq1d 6564 . . . . . . . . 9 (𝜑 → (𝐻𝑅) = ((𝐺 Yrm 𝑅) − 𝑅))
3331, 32breqtrrd 4611 . . . . . . . 8 (𝜑 → (𝐺 − 1) ∥ (𝐻𝑅))
34 jm2.27a7 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℕ0)
3534nn0zd 11356 . . . . . . . . . 10 (𝜑𝐺 ∈ ℤ)
36 peano2zm 11297 . . . . . . . . . 10 (𝐺 ∈ ℤ → (𝐺 − 1) ∈ ℤ)
3735, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐺 − 1) ∈ ℤ)
3812, 9zsubcld 11363 . . . . . . . . 9 (𝜑 → (𝐻𝑅) ∈ ℤ)
39 dvdstr 14856 . . . . . . . . 9 (((2 · 𝐶) ∈ ℤ ∧ (𝐺 − 1) ∈ ℤ ∧ (𝐻𝑅) ∈ ℤ) → (((2 · 𝐶) ∥ (𝐺 − 1) ∧ (𝐺 − 1) ∥ (𝐻𝑅)) → (2 · 𝐶) ∥ (𝐻𝑅)))
406, 37, 38, 39syl3anc 1318 . . . . . . . 8 (𝜑 → (((2 · 𝐶) ∥ (𝐺 − 1) ∧ (𝐺 − 1) ∥ (𝐻𝑅)) → (2 · 𝐶) ∥ (𝐻𝑅)))
4116, 33, 40mp2and 711 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (𝐻𝑅))
42 congtr 36550 . . . . . . 7 ((((2 · 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐻 ∈ ℤ ∧ 𝑅 ∈ ℤ) ∧ ((2 · 𝐶) ∥ (𝐵𝐻) ∧ (2 · 𝐶) ∥ (𝐻𝑅))) → (2 · 𝐶) ∥ (𝐵𝑅))
436, 8, 12, 9, 15, 41, 42syl222anc 1334 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (𝐵𝑅))
4443orcd 406 . . . . 5 (𝜑 → ((2 · 𝐶) ∥ (𝐵𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)))
45 jm2.27a24 . . . . . . 7 (𝜑𝑄 ∈ ℤ)
46 zmulcl 11303 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (2 · 𝑄) ∈ ℤ)
472, 45, 46sylancr 694 . . . . . 6 (𝜑 → (2 · 𝑄) ∈ ℤ)
48 zsqcl 12796 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
494, 48syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐶↑2) ∈ ℤ)
50 dvdsmul2 14842 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (𝐶↑2) ∥ (2 · (𝐶↑2)))
512, 49, 50sylancr 694 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∥ (2 · (𝐶↑2)))
52 jm2.27a10 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℕ0)
5352nn0zd 11356 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ ℤ)
5453peano2zd 11361 . . . . . . . . . . . . 13 (𝜑 → (𝐽 + 1) ∈ ℤ)
55 zmulcl 11303 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (2 · (𝐶↑2)) ∈ ℤ)
562, 49, 55sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐶↑2)) ∈ ℤ)
57 dvdsmultr2 14859 . . . . . . . . . . . . 13 (((𝐶↑2) ∈ ℤ ∧ (𝐽 + 1) ∈ ℤ ∧ (2 · (𝐶↑2)) ∈ ℤ) → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))))
5849, 54, 56, 57syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))))
5951, 58mpd 15 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2))))
601oveq1d 6564 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) = ((𝐴 Yrm 𝑃)↑2))
61 jm2.27a15 . . . . . . . . . . . 12 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
62 jm2.27a26 . . . . . . . . . . . 12 (𝜑𝐸 = (𝐴 Yrm 𝑄))
6361, 62eqtr3d 2646 . . . . . . . . . . 11 (𝜑 → ((𝐽 + 1) · (2 · (𝐶↑2))) = (𝐴 Yrm 𝑄))
6459, 60, 633brtr3d 4614 . . . . . . . . . 10 (𝜑 → ((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄))
65 jm2.27a1 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ℤ‘2))
6654zred 11358 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 + 1) ∈ ℝ)
6756zred 11358 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝐶↑2)) ∈ ℝ)
68 nn0p1nn 11209 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ)
6952, 68syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐽 + 1) ∈ ℕ)
7069nngt0d 10941 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (𝐽 + 1))
71 2nn 11062 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
723nnsqcld 12891 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶↑2) ∈ ℕ)
73 nnmulcl 10920 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ (𝐶↑2) ∈ ℕ) → (2 · (𝐶↑2)) ∈ ℕ)
7471, 72, 73sylancr 694 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝐶↑2)) ∈ ℕ)
7574nngt0d 10941 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (2 · (𝐶↑2)))
7666, 67, 70, 75mulgt0d 10071 . . . . . . . . . . . . . . 15 (𝜑 → 0 < ((𝐽 + 1) · (2 · (𝐶↑2))))
7776, 61breqtrrd 4611 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐸)
78 rmy0 36512 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
7965, 78syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 0) = 0)
8062eqcomd 2616 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 𝑄) = 𝐸)
8177, 79, 803brtr4d 4615 . . . . . . . . . . . . 13 (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑄))
82 ltrmy 36537 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)))
8365, 24, 45, 82syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)))
8481, 83mpbird 246 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑄)
85 elnnz 11264 . . . . . . . . . . . 12 (𝑄 ∈ ℕ ↔ (𝑄 ∈ ℤ ∧ 0 < 𝑄))
8645, 84, 85sylanbrc 695 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℕ)
873nngt0d 10941 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
881eqcomd 2616 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 𝑃) = 𝐶)
8987, 79, 883brtr4d 4615 . . . . . . . . . . . . 13 (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑃))
90 ltrmy 36537 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)))
9165, 24, 10, 90syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)))
9289, 91mpbird 246 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑃)
93 elnnz 11264 . . . . . . . . . . . 12 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
9410, 92, 93sylanbrc 695 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
95 jm2.20nn 36582 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄))
9665, 86, 94, 95syl3anc 1318 . . . . . . . . . 10 (𝜑 → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄))
9764, 96mpbid 221 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄)
981, 4eqeltrrd 2689 . . . . . . . . . 10 (𝜑 → (𝐴 Yrm 𝑃) ∈ ℤ)
99 muldvds2 14845 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄))
10010, 98, 45, 99syl3anc 1318 . . . . . . . . 9 (𝜑 → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄))
10197, 100mpd 15 . . . . . . . 8 (𝜑 → (𝐴 Yrm 𝑃) ∥ 𝑄)
1021, 101eqbrtrd 4605 . . . . . . 7 (𝜑𝐶𝑄)
1032a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
104 dvdscmul 14846 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐶𝑄 → (2 · 𝐶) ∥ (2 · 𝑄)))
1054, 45, 103, 104syl3anc 1318 . . . . . . 7 (𝜑 → (𝐶𝑄 → (2 · 𝐶) ∥ (2 · 𝑄)))
106102, 105mpd 15 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (2 · 𝑄))
107 jm2.27a25 . . . . . . . . . 10 (𝜑𝐹 = (𝐴 Xrm 𝑄))
108 jm2.27a6 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℕ0)
109108nn0zd 11356 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
110107, 109eqeltrrd 2689 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∈ ℤ)
111 frmy 36497 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
112111fovcl 6663 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℤ) → (𝐴 Yrm 𝑅) ∈ ℤ)
11365, 9, 112syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐴 Yrm 𝑅) ∈ ℤ)
11421, 12eqeltrrd 2689 . . . . . . . . 9 (𝜑 → (𝐺 Yrm 𝑅) ∈ ℤ)
115 eluzelz 11573 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
11665, 115syl 17 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
117 jm2.27a16 . . . . . . . . . . . 12 (𝜑𝐹 ∥ (𝐺𝐴))
118 congsym 36553 . . . . . . . . . . . 12 (((𝐹 ∈ ℤ ∧ 𝐺 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐹 ∥ (𝐺𝐴))) → 𝐹 ∥ (𝐴𝐺))
119109, 35, 116, 117, 118syl22anc 1319 . . . . . . . . . . 11 (𝜑𝐹 ∥ (𝐴𝐺))
120107, 119eqbrtrrd 4607 . . . . . . . . . 10 (𝜑 → (𝐴 Xrm 𝑄) ∥ (𝐴𝐺))
121 jm2.15nn0 36588 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℕ0) → (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
12265, 17, 29, 121syl3anc 1318 . . . . . . . . . 10 (𝜑 → (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
123116, 35zsubcld 11363 . . . . . . . . . . 11 (𝜑 → (𝐴𝐺) ∈ ℤ)
124113, 114zsubcld 11363 . . . . . . . . . . 11 (𝜑 → ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∈ ℤ)
125 dvdstr 14856 . . . . . . . . . . 11 (((𝐴 Xrm 𝑄) ∈ ℤ ∧ (𝐴𝐺) ∈ ℤ ∧ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∈ ℤ) → (((𝐴 Xrm 𝑄) ∥ (𝐴𝐺) ∧ (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))))
126110, 123, 124, 125syl3anc 1318 . . . . . . . . . 10 (𝜑 → (((𝐴 Xrm 𝑄) ∥ (𝐴𝐺) ∧ (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))))
127120, 122, 126mp2and 711 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
128 jm2.27a18 . . . . . . . . . 10 (𝜑𝐹 ∥ (𝐻𝐶))
12921, 1oveq12d 6567 . . . . . . . . . 10 (𝜑 → (𝐻𝐶) = ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
130128, 107, 1293brtr3d 4614 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
131 congtr 36550 . . . . . . . . 9 ((((𝐴 Xrm 𝑄) ∈ ℤ ∧ (𝐴 Yrm 𝑅) ∈ ℤ) ∧ ((𝐺 Yrm 𝑅) ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ) ∧ ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∧ (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
132110, 113, 114, 98, 127, 130, 131syl222anc 1334 . . . . . . . 8 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
133132orcd 406 . . . . . . 7 (𝜑 → ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))))
134 jm2.26 36587 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℕ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))))
13565, 86, 9, 10, 134syl22anc 1319 . . . . . . 7 (𝜑 → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))))
136133, 135mpbid 221 . . . . . 6 (𝜑 → ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))
137 dvdsacongtr 36569 . . . . . 6 ((((2 · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℤ) ∧ (𝑃 ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) ∧ ((2 · 𝐶) ∥ (2 · 𝑄) ∧ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))
13847, 9, 10, 6, 106, 136, 137syl222anc 1334 . . . . 5 (𝜑 → ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))
139 acongtr 36563 . . . . 5 ((((2 · 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (((2 · 𝐶) ∥ (𝐵𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)) ∧ ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))
1406, 8, 9, 10, 44, 138, 139syl222anc 1334 . . . 4 (𝜑 → ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))
1417nnnn0d 11228 . . . . . 6 (𝜑𝐵 ∈ ℕ0)
1423nnnn0d 11228 . . . . . 6 (𝜑𝐶 ∈ ℕ0)
143 jm2.27a20 . . . . . 6 (𝜑𝐵𝐶)
144 elfz2nn0 12300 . . . . . 6 (𝐵 ∈ (0...𝐶) ↔ (𝐵 ∈ ℕ0𝐶 ∈ ℕ0𝐵𝐶))
145141, 142, 143, 144syl3anbrc 1239 . . . . 5 (𝜑𝐵 ∈ (0...𝐶))
14694nnnn0d 11228 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
147 rmygeid 36549 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℕ0) → 𝑃 ≤ (𝐴 Yrm 𝑃))
14865, 146, 147syl2anc 691 . . . . . . 7 (𝜑𝑃 ≤ (𝐴 Yrm 𝑃))
149148, 1breqtrrd 4611 . . . . . 6 (𝜑𝑃𝐶)
150 elfz2nn0 12300 . . . . . 6 (𝑃 ∈ (0...𝐶) ↔ (𝑃 ∈ ℕ0𝐶 ∈ ℕ0𝑃𝐶))
151146, 142, 149, 150syl3anbrc 1239 . . . . 5 (𝜑𝑃 ∈ (0...𝐶))
152 acongeq 36568 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐵 ∈ (0...𝐶) ∧ 𝑃 ∈ (0...𝐶)) → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))))
1533, 145, 151, 152syl3anc 1318 . . . 4 (𝜑 → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))))
154140, 153mpbird 246 . . 3 (𝜑𝐵 = 𝑃)
155154oveq2d 6565 . 2 (𝜑 → (𝐴 Yrm 𝐵) = (𝐴 Yrm 𝑃))
1561, 155eqtr4d 2647 1 (𝜑𝐶 = (𝐴 Yrm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  cdvds 14821   Xrm crmx 36482   Yrm crmy 36483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485
This theorem is referenced by:  jm2.27b  36591
  Copyright terms: Public domain W3C validator