Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Structured version   Visualization version   GIF version

Theorem jm2.23 36581
Description: Lemma for jm2.20nn 36582. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))

Proof of Theorem jm2.23
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 12633 . . . . . 6 (3...𝐽) ∈ Fin
2 ssrab2 3650 . . . . . 6 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)
3 ssfi 8065 . . . . . 6 (((3...𝐽) ∈ Fin ∧ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
41, 2, 3mp2an 704 . . . . 5 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
54a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
6 nnnn0 11176 . . . . . . . 8 (𝐽 ∈ ℕ → 𝐽 ∈ ℕ0)
763ad2ant3 1077 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℕ0)
82sseli 3564 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (3...𝐽))
9 elfzelz 12213 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℤ)
108, 9syl 17 . . . . . . 7 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
11 bccl 12971 . . . . . . 7 ((𝐽 ∈ ℕ0𝑎 ∈ ℤ) → (𝐽C𝑎) ∈ ℕ0)
127, 10, 11syl2an 493 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
1312nn0zd 11356 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℤ)
14 simpl1 1057 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝐴 ∈ (ℤ‘2))
15 simpl2 1058 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑁 ∈ ℤ)
16 frmx 36496 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1716fovcl 6663 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1814, 15, 17syl2anc 691 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1918nn0zd 11356 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℤ)
208adantl 481 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (3...𝐽))
21 fznn0sub 12244 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → (𝐽𝑎) ∈ ℕ0)
2220, 21syl 17 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
23 zexpcl 12737 . . . . . . 7 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑎) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
2419, 22, 23syl2anc 691 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
25 rmspecnonsq 36490 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2625eldifad 3552 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
2726nnzd 11357 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
28273ad2ant1 1075 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℤ)
29 breq2 4587 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → (2 ∥ 𝑏 ↔ 2 ∥ 𝑎))
3029notbid 307 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 𝑎))
3130elrab 3331 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
3231simprbi 479 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
33 1zzd 11285 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
34 n2dvds1 14942 . . . . . . . . . . . 12 ¬ 2 ∥ 1
3534a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
36 omoe 14926 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ ¬ 2 ∥ 𝑎) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑎 − 1))
3710, 32, 33, 35, 36syl22anc 1319 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
38 2z 11286 . . . . . . . . . . . 12 2 ∈ ℤ
3938a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
40 2ne0 10990 . . . . . . . . . . . 12 2 ≠ 0
4140a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
42 peano2zm 11297 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎 − 1) ∈ ℤ)
4310, 42syl 17 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
44 dvdsval2 14824 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑎 − 1) ∈ ℤ) → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4539, 41, 43, 44syl3anc 1318 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4637, 45mpbid 221 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
4743zred 11358 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
48 0red 9920 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 ∈ ℝ)
49 3re 10971 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ∈ ℝ)
519zred 11358 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℝ)
52 3pos 10991 . . . . . . . . . . . . . . . 16 0 < 3
5352a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 < 3)
54 elfzle1 12215 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ≤ 𝑎)
5548, 50, 51, 53, 54ltletrd 10076 . . . . . . . . . . . . . 14 (𝑎 ∈ (3...𝐽) → 0 < 𝑎)
56 elnnz 11264 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
579, 55, 56sylanbrc 695 . . . . . . . . . . . . 13 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℕ)
58 nnm1nn0 11211 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (𝑎 − 1) ∈ ℕ0)
6059nn0ge0d 11231 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 1))
618, 60syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
62 2re 10967 . . . . . . . . . . 11 2 ∈ ℝ
6362a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
64 2pos 10989 . . . . . . . . . . 11 0 < 2
6564a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
66 divge0 10771 . . . . . . . . . 10 ((((𝑎 − 1) ∈ ℝ ∧ 0 ≤ (𝑎 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑎 − 1) / 2))
6747, 61, 63, 65, 66syl22anc 1319 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
68 elnn0z 11267 . . . . . . . . 9 (((𝑎 − 1) / 2) ∈ ℕ0 ↔ (((𝑎 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑎 − 1) / 2)))
6946, 67, 68sylanbrc 695 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
70 zexpcl 12737 . . . . . . . 8 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
7128, 69, 70syl2an 493 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
72 frmy 36497 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7372fovcl 6663 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
7414, 15, 73syl2anc 691 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℤ)
75 elfzel1 12212 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 3 ∈ ℤ)
769, 75zsubcld 11363 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℤ)
77 subge0 10420 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 3 ∈ ℝ) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7851, 49, 77sylancl 693 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7954, 78mpbird 246 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 3))
80 elnn0z 11267 . . . . . . . . . . 11 ((𝑎 − 3) ∈ ℕ0 ↔ ((𝑎 − 3) ∈ ℤ ∧ 0 ≤ (𝑎 − 3)))
8176, 79, 80sylanbrc 695 . . . . . . . . . 10 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℕ0)
828, 81syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 3) ∈ ℕ0)
8382adantl 481 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝑎 − 3) ∈ ℕ0)
84 zexpcl 12737 . . . . . . . 8 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8574, 83, 84syl2anc 691 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8671, 85zmulcld 11364 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℤ)
8724, 86zmulcld 11364 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℤ)
8813, 87zmulcld 11364 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
895, 88fsumzcl 14313 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
90733adant3 1074 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
91 3nn0 11187 . . . 4 3 ∈ ℕ0
92 zexpcl 12737 . . . 4 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
9390, 91, 92sylancl 693 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
94 dvdsmul2 14842 . . 3 ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
9589, 93, 94syl2anc 691 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
96 jm2.22 36580 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
976, 96syl3an3 1353 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
98 1lt3 11073 . . . . . . . . . . . 12 1 < 3
99 1re 9918 . . . . . . . . . . . . 13 1 ∈ ℝ
10099, 49ltnlei 10037 . . . . . . . . . . . 12 (1 < 3 ↔ ¬ 3 ≤ 1)
10198, 100mpbi 219 . . . . . . . . . . 11 ¬ 3 ≤ 1
102 elfzle1 12215 . . . . . . . . . . 11 (1 ∈ (3...𝐽) → 3 ≤ 1)
103101, 102mto 187 . . . . . . . . . 10 ¬ 1 ∈ (3...𝐽)
104103a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ (3...𝐽))
105104intnanrd 954 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
106 breq2 4587 . . . . . . . . . 10 (𝑏 = 1 → (2 ∥ 𝑏 ↔ 2 ∥ 1))
107106notbid 307 . . . . . . . . 9 (𝑏 = 1 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 1))
108107elrab 3331 . . . . . . . 8 (1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
109105, 108sylnibr 318 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
110 disjsn 4192 . . . . . . 7 (({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
111109, 110sylibr 223 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅)
112 simpr 476 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → 𝑎 = 1)
113112olcd 407 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
114 elfznn0 12302 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℕ0)
115114adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℕ0)
116115ad2antlr 759 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℕ0)
117 simplrr 797 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ¬ 2 ∥ 𝑎)
118 simpr 476 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ≠ 1)
119 elnn1uz2 11641 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ ↔ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2)))
120 df-ne 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ≠ 1 ↔ ¬ 𝑎 = 1)
121120biimpi 205 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ≠ 1 → ¬ 𝑎 = 1)
1221213ad2ant3 1077 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → ¬ 𝑎 = 1)
123122pm2.21d 117 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 = 1 → 3 ≤ 𝑎))
124123imp 444 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 1) → 3 ≤ 𝑎)
125 uzp1 11597 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (ℤ‘2) → (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1))))
126 1z 11284 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
127 dvdsmul1 14841 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → 2 ∥ (2 · 1))
12838, 126, 127mp2an 704 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ (2 · 1)
129 2t1e2 11053 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) = 2
130128, 129breqtri 4608 . . . . . . . . . . . . . . . . . . . . 21 2 ∥ 2
131 breq2 4587 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 2 → (2 ∥ 𝑎 ↔ 2 ∥ 2))
132131adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → (2 ∥ 𝑎 ↔ 2 ∥ 2))
133130, 132mpbiri 247 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 2 ∥ 𝑎)
134 simpl2 1058 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → ¬ 2 ∥ 𝑎)
135133, 134pm2.21dd 185 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 3 ≤ 𝑎)
136 eluzle 11576 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (ℤ‘3) → 3 ≤ 𝑎)
137 2p1e3 11028 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
138137fveq2i 6106 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘(2 + 1)) = (ℤ‘3)
139136, 138eleq2s 2706 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (ℤ‘(2 + 1)) → 3 ≤ 𝑎)
140139adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘(2 + 1))) → 3 ≤ 𝑎)
141135, 140jaodan 822 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1)))) → 3 ≤ 𝑎)
142125, 141sylan2 490 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘2)) → 3 ≤ 𝑎)
143124, 142jaodan 822 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2))) → 3 ≤ 𝑎)
144119, 143sylan2b 491 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ ℕ) → 3 ≤ 𝑎)
145 dvds0 14835 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∥ 0)
14638, 145ax-mp 5 . . . . . . . . . . . . . . . . . 18 2 ∥ 0
147 breq2 4587 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (2 ∥ 𝑎 ↔ 2 ∥ 0))
148146, 147mpbiri 247 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → 2 ∥ 𝑎)
149148adantl 481 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 2 ∥ 𝑎)
150 simpl2 1058 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → ¬ 2 ∥ 𝑎)
151149, 150pm2.21dd 185 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 3 ≤ 𝑎)
152 elnn0 11171 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
153152biimpi 205 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
1541533ad2ant1 1075 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
155144, 151, 154mpjaodan 823 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → 3 ≤ 𝑎)
156116, 117, 118, 155syl3anc 1318 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ≤ 𝑎)
157 elfzle2 12216 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎𝐽)
158157adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎𝐽)
159158ad2antlr 759 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎𝐽)
160 elfzelz 12213 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℤ)
161160adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℤ)
162161ad2antlr 759 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℤ)
163 3z 11287 . . . . . . . . . . . . . . 15 3 ∈ ℤ
164163a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ∈ ℤ)
165 nnz 11276 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
1661653ad2ant3 1077 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℤ)
167166ad2antrr 758 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝐽 ∈ ℤ)
168 elfz 12203 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑎 ∈ (3...𝐽) ↔ (3 ≤ 𝑎𝑎𝐽)))
169162, 164, 167, 168syl3anc 1318 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → (𝑎 ∈ (3...𝐽) ↔ (3 ≤ 𝑎𝑎𝐽)))
170156, 159, 169mpbir2and 959 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ (3...𝐽))
171170, 117jca 553 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
172171orcd 406 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
173113, 172pm2.61dane 2869 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
174 nn0uz 11598 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
17591, 174eleqtri 2686 . . . . . . . . . . . . . 14 3 ∈ (ℤ‘0)
176 fzss1 12251 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (3...𝐽) ⊆ (0...𝐽))
177175, 176ax-mp 5 . . . . . . . . . . . . 13 (3...𝐽) ⊆ (0...𝐽)
178177sseli 3564 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ (0...𝐽))
179178anim1i 590 . . . . . . . . . . 11 ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
180179adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
181 0le1 10430 . . . . . . . . . . . . 13 0 ≤ 1
182181a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ≤ 1)
183 nnge1 10923 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
1841833ad2ant3 1077 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 1 ≤ 𝐽)
185184adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ≤ 𝐽)
186 1zzd 11285 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ ℤ)
187 0zd 11266 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ∈ ℤ)
188166adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 𝐽 ∈ ℤ)
189 elfz 12203 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (1 ∈ (0...𝐽) ↔ (0 ≤ 1 ∧ 1 ≤ 𝐽)))
190186, 187, 188, 189syl3anc 1318 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → (1 ∈ (0...𝐽) ↔ (0 ≤ 1 ∧ 1 ≤ 𝐽)))
191182, 185, 190mpbir2and 959 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ (0...𝐽))
19234a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ¬ 2 ∥ 1)
193 eleq1 2676 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 ∈ (0...𝐽) ↔ 1 ∈ (0...𝐽)))
194 breq2 4587 . . . . . . . . . . . . . 14 (𝑎 = 1 → (2 ∥ 𝑎 ↔ 2 ∥ 1))
195194notbid 307 . . . . . . . . . . . . 13 (𝑎 = 1 → (¬ 2 ∥ 𝑎 ↔ ¬ 2 ∥ 1))
196193, 195anbi12d 743 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
197196adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
198191, 192, 197mpbir2and 959 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
199180, 198jaodan 822 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
200173, 199impbida 873 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)))
20130elrab 3331 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
202 elun 3715 . . . . . . . . 9 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}))
203 velsn 4141 . . . . . . . . . 10 (𝑎 ∈ {1} ↔ 𝑎 = 1)
20431, 203orbi12i 542 . . . . . . . . 9 ((𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
205202, 204bitri 263 . . . . . . . 8 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
206200, 201, 2053bitr4g 302 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ 𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1})))
207206eqrdv 2608 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} = ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}))
208 fzfi 12633 . . . . . . . 8 (0...𝐽) ∈ Fin
209 ssrab2 3650 . . . . . . . 8 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)
210 ssfi 8065 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
211208, 209, 210mp2an 704 . . . . . . 7 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
212211a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
213209sseli 3564 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (0...𝐽))
214213, 160syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
2157, 214, 11syl2an 493 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
216215nn0cnd 11230 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
217173adant3 1074 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
218217nn0cnd 11230 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
219218adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
220213adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (0...𝐽))
221 fznn0sub 12244 . . . . . . . . . 10 (𝑎 ∈ (0...𝐽) → (𝐽𝑎) ∈ ℕ0)
222220, 221syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
223219, 222expcld 12870 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
22490zcnd 11359 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
225213, 114syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ0)
226 expcl 12740 . . . . . . . . . 10 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
227224, 225, 226syl2an 493 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
228 rmspecpos 36499 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
229228rpcnd 11750 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
2302293ad2ant1 1075 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℂ)
231201simprbi 479 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
232 1zzd 11285 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
23334a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
234214, 231, 232, 233, 36syl22anc 1319 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
23538a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
23640a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
237214, 42syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
238235, 236, 237, 44syl3anc 1318 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
239234, 238mpbid 221 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
240237zred 11358 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
241148a1i 11 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (0...𝐽) → (𝑎 = 0 → 2 ∥ 𝑎))
242241con3dimp 456 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → ¬ 𝑎 = 0)
243201, 242sylbi 206 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 𝑎 = 0)
244225, 153syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
245 orel2 397 . . . . . . . . . . . . . . 15 𝑎 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → 𝑎 ∈ ℕ))
246243, 244, 245sylc 63 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ)
247246, 58syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℕ0)
248247nn0ge0d 11231 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
24962a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
25064a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
251240, 248, 249, 250, 66syl22anc 1319 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
252239, 251, 68sylanbrc 695 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
253 expcl 12740 . . . . . . . . . 10 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
254230, 252, 253syl2an 493 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
255227, 254mulcld 9939 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) ∈ ℂ)
256223, 255mulcld 9939 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) ∈ ℂ)
257216, 256mulcld 9939 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) ∈ ℂ)
258111, 207, 212, 257fsumsplit 14318 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))))
259 expcl 12740 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
260224, 91, 259sylancl 693 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
26188zcnd 11359 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
2625, 260, 261fsummulc1 14359 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
26312nn0cnd 11230 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
264218adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
265264, 22expcld 12870 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
266230, 69, 253syl2an 493 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
267 expcl 12740 . . . . . . . . . . . . 13 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
268224, 82, 267syl2an 493 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
269266, 268mulcld 9939 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℂ)
270265, 269mulcld 9939 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℂ)
271260adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
272263, 270, 271mulassd 9942 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))))
273265, 269, 271mulassd 9942 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))))
274266, 268, 271mulassd 9942 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))))
275268, 271mulcld 9939 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
276266, 275mulcomd 9940 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))) = ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
277224adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℂ)
27891a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 3 ∈ ℕ0)
279277, 278, 83expaddd 12872 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)))
28010adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℤ)
281280zcnd 11359 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℂ)
282 3cn 10972 . . . . . . . . . . . . . . . . 17 3 ∈ ℂ
283 npcan 10169 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑎 − 3) + 3) = 𝑎)
284281, 282, 283sylancl 693 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝑎 − 3) + 3) = 𝑎)
285284oveq2d 6565 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = ((𝐴 Yrm 𝑁)↑𝑎))
286279, 285eqtr3d 2646 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐴 Yrm 𝑁)↑𝑎))
287286oveq1d 6564 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
288274, 276, 2873eqtrd 2648 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
289288oveq2d 6565 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
290273, 289eqtrd 2644 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
291290oveq2d 6565 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
292272, 291eqtrd 2644 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
293292sumeq2dv 14281 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
294262, 293eqtr2d 2645 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
295 1nn 10908 . . . . . . 7 1 ∈ ℕ
296 bccl 12971 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝐽C1) ∈ ℕ0)
2976, 126, 296sylancl 693 . . . . . . . . . 10 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℕ0)
298297nn0cnd 11230 . . . . . . . . 9 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℂ)
2992983ad2ant3 1077 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) ∈ ℂ)
300 nnm1nn0 11211 . . . . . . . . . . 11 (𝐽 ∈ ℕ → (𝐽 − 1) ∈ ℕ0)
3013003ad2ant3 1077 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 − 1) ∈ ℕ0)
302218, 301expcld 12870 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑(𝐽 − 1)) ∈ ℂ)
303 1nn0 11185 . . . . . . . . . . 11 1 ∈ ℕ0
304 expcl 12740 . . . . . . . . . . 11 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
305224, 303, 304sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
306 1m1e0 10966 . . . . . . . . . . . . . 14 (1 − 1) = 0
307306oveq1i 6559 . . . . . . . . . . . . 13 ((1 − 1) / 2) = (0 / 2)
308 2cn 10968 . . . . . . . . . . . . . 14 2 ∈ ℂ
309308, 40div0i 10638 . . . . . . . . . . . . 13 (0 / 2) = 0
310307, 309eqtri 2632 . . . . . . . . . . . 12 ((1 − 1) / 2) = 0
311 0nn0 11184 . . . . . . . . . . . 12 0 ∈ ℕ0
312310, 311eqeltri 2684 . . . . . . . . . . 11 ((1 − 1) / 2) ∈ ℕ0
313 expcl 12740 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((1 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
314230, 312, 313sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
315305, 314mulcld 9939 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) ∈ ℂ)
316302, 315mulcld 9939 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))) ∈ ℂ)
317299, 316mulcld 9939 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ)
318 oveq2 6557 . . . . . . . . 9 (𝑎 = 1 → (𝐽C𝑎) = (𝐽C1))
319 oveq2 6557 . . . . . . . . . . 11 (𝑎 = 1 → (𝐽𝑎) = (𝐽 − 1))
320319oveq2d 6565 . . . . . . . . . 10 (𝑎 = 1 → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) = ((𝐴 Xrm 𝑁)↑(𝐽 − 1)))
321 oveq2 6557 . . . . . . . . . . 11 (𝑎 = 1 → ((𝐴 Yrm 𝑁)↑𝑎) = ((𝐴 Yrm 𝑁)↑1))
322 oveq1 6556 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
323322oveq1d 6564 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 − 1) / 2) = ((1 − 1) / 2))
324323oveq2d 6565 . . . . . . . . . . 11 (𝑎 = 1 → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) = (((𝐴↑2) − 1)↑((1 − 1) / 2)))
325321, 324oveq12d 6567 . . . . . . . . . 10 (𝑎 = 1 → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
326320, 325oveq12d 6567 . . . . . . . . 9 (𝑎 = 1 → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
327318, 326oveq12d 6567 . . . . . . . 8 (𝑎 = 1 → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
328327sumsn 14319 . . . . . . 7 ((1 ∈ ℕ ∧ ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
329295, 317, 328sylancr 694 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
330294, 329oveq12d 6567 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
33197, 258, 3303eqtrd 2648 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
332 bcn1 12962 . . . . . . 7 (𝐽 ∈ ℕ0 → (𝐽C1) = 𝐽)
3337, 332syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) = 𝐽)
334333eqcomd 2616 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 = (𝐽C1))
335224exp1d 12865 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) = (𝐴 Yrm 𝑁))
336310a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((1 − 1) / 2) = 0)
337336oveq2d 6565 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = (((𝐴↑2) − 1)↑0))
338230exp0d 12864 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑0) = 1)
339337, 338eqtrd 2644 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = 1)
340335, 339oveq12d 6567 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) = ((𝐴 Yrm 𝑁) · 1))
341224mulid1d 9936 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
342340, 341eqtr2d 2645 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
343342oveq2d 6565 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
344334, 343oveq12d 6567 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
345331, 344oveq12d 6567 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
3465, 261fsumcl 14311 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
347346, 260mulcld 9939 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
348347, 317pncand 10272 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
349345, 348eqtrd 2644 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
35095, 349breqtrrd 4611 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  Ccbc 12951  Σcsu 14264  cdvds 14821  NNcsquarenn 36418   Xrm crmx 36482   Yrm crmy 36483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-squarenn 36423  df-pell1qr 36424  df-pell14qr 36425  df-pell1234qr 36426  df-pellfund 36427  df-rmx 36484  df-rmy 36485
This theorem is referenced by:  jm2.20nn  36582
  Copyright terms: Public domain W3C validator