Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpssmapc Structured version   Visualization version   GIF version

Theorem ixpssmapc 38269
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ixpssmapc.x 𝑥𝜑
ixpssmapc.c (𝜑𝐶𝑉)
ixpssmapc.b ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
ixpssmapc (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶𝑚 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapc
StepHypRef Expression
1 ixpssmapc.c . . . 4 (𝜑𝐶𝑉)
2 ixpssmapc.x . . . . . 6 𝑥𝜑
3 ixpssmapc.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
43ex 449 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝐶))
52, 4ralrimi 2940 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6 iunss 4497 . . . . 5 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
75, 6sylibr 223 . . . 4 (𝜑 𝑥𝐴 𝐵𝐶)
81, 7ssexd 4733 . . 3 (𝜑 𝑥𝐴 𝐵 ∈ V)
9 ixpssmap2g 7823 . . 3 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
108, 9syl 17 . 2 (𝜑X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
11 mapss 7786 . . 3 ((𝐶𝑉 𝑥𝐴 𝐵𝐶) → ( 𝑥𝐴 𝐵𝑚 𝐴) ⊆ (𝐶𝑚 𝐴))
121, 7, 11syl2anc 691 . 2 (𝜑 → ( 𝑥𝐴 𝐵𝑚 𝐴) ⊆ (𝐶𝑚 𝐴))
1310, 12sstrd 3578 1 (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wnf 1699  wcel 1977  wral 2896  Vcvv 3173  wss 3540   ciun 4455  (class class class)co 6549  𝑚 cmap 7744  Xcixp 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-ixp 7795
This theorem is referenced by:  ioorrnopnlem  39200
  Copyright terms: Public domain W3C validator