Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnbasval Structured version   Visualization version   GIF version

Theorem ixpsnbasval 19030
 Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Distinct variable groups:   𝑅,𝑓,𝑥   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 7797 . . 3 (𝑋𝑊X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
21adantl 481 . 2 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
3 csbfv2g 6142 . . . . . . . . 9 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))
4 csbfv2g 6142 . . . . . . . . . . 11 (𝑋𝑊𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋 / 𝑥𝑥))
5 csbvarg 3955 . . . . . . . . . . . 12 (𝑋𝑊𝑋 / 𝑥𝑥 = 𝑋)
65fveq2d 6107 . . . . . . . . . . 11 (𝑋𝑊 → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋 / 𝑥𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋))
74, 6eqtrd 2644 . . . . . . . . . 10 (𝑋𝑊𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋))
87fveq2d 6107 . . . . . . . . 9 (𝑋𝑊 → (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
93, 8eqtrd 2644 . . . . . . . 8 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
109adantl 481 . . . . . . 7 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
11 fvex 6113 . . . . . . . . . . . . . 14 (ringLMod‘𝑅) ∈ V
1211a1i 11 . . . . . . . . . . . . 13 (𝑅𝑉 → (ringLMod‘𝑅) ∈ V)
1312anim1i 590 . . . . . . . . . . . 12 ((𝑅𝑉𝑋𝑊) → ((ringLMod‘𝑅) ∈ V ∧ 𝑋𝑊))
1413ancomd 466 . . . . . . . . . . 11 ((𝑅𝑉𝑋𝑊) → (𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V))
15 xpsng 6312 . . . . . . . . . . 11 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
1614, 15syl 17 . . . . . . . . . 10 ((𝑅𝑉𝑋𝑊) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
1716fveq1d 6105 . . . . . . . . 9 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋))
18 fvsng 6352 . . . . . . . . . 10 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
1914, 18syl 17 . . . . . . . . 9 ((𝑅𝑉𝑋𝑊) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
2017, 19eqtrd 2644 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = (ringLMod‘𝑅))
2120fveq2d 6107 . . . . . . 7 ((𝑅𝑉𝑋𝑊) → (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) = (Base‘(ringLMod‘𝑅)))
2210, 21eqtrd 2644 . . . . . 6 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(ringLMod‘𝑅)))
23 rlmbas 19016 . . . . . 6 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
2422, 23syl6eqr 2662 . . . . 5 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑅))
2524eleq2d 2673 . . . 4 ((𝑅𝑉𝑋𝑊) → ((𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) ↔ (𝑓𝑋) ∈ (Base‘𝑅)))
2625anbi2d 736 . . 3 ((𝑅𝑉𝑋𝑊) → ((𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))))
2726abbidv 2728 . 2 ((𝑅𝑉𝑋𝑊) → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
282, 27eqtrd 2644 1 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  Vcvv 3173  ⦋csb 3499  {csn 4125  ⟨cop 4131   × cxp 5036   Fn wfn 5799  ‘cfv 5804  Xcixp 7794  Basecbs 15695  ringLModcrglmod 18990 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-sca 15784  df-vsca 15785  df-ip 15786  df-sra 18993  df-rgmod 18994 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator