Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunopeqop Structured version   Visualization version   GIF version

Theorem iunopeqop 4906
 Description: Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020.)
Hypotheses
Ref Expression
iunopeqop.b 𝐵 ∈ V
iunopeqop.c 𝐶 ∈ V
iunopeqop.d 𝐷 ∈ V
Assertion
Ref Expression
iunopeqop (𝐴 ≠ ∅ → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑧)   𝐶(𝑧)   𝐷(𝑧)

Proof of Theorem iunopeqop
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0snor2el 4304 . 2 (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
2 nfiu1 4486 . . . . . 6 𝑥 𝑥𝐴 {⟨𝑥, 𝐵⟩}
32nfeq1 2764 . . . . 5 𝑥 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷
4 nfv 1830 . . . . 5 𝑥𝑧 𝐴 = {𝑧}
53, 4nfim 1813 . . . 4 𝑥( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})
6 ssiun2 4499 . . . . . . 7 (𝑥𝐴 → {⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
7 nfcv 2751 . . . . . . . 8 𝑥𝑦
8 nfcsb1v 3515 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵
97, 8nfop 4356 . . . . . . . . . 10 𝑥𝑦, 𝑦 / 𝑥𝐵
109nfsn 4189 . . . . . . . . 9 𝑥{⟨𝑦, 𝑦 / 𝑥𝐵⟩}
1110, 2nfss 3561 . . . . . . . 8 𝑥{⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}
12 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
13 csbeq1a 3508 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1412, 13opeq12d 4348 . . . . . . . . . 10 (𝑥 = 𝑦 → ⟨𝑥, 𝐵⟩ = ⟨𝑦, 𝑦 / 𝑥𝐵⟩)
1514sneqd 4137 . . . . . . . . 9 (𝑥 = 𝑦 → {⟨𝑥, 𝐵⟩} = {⟨𝑦, 𝑦 / 𝑥𝐵⟩})
1615sseq1d 3595 . . . . . . . 8 (𝑥 = 𝑦 → ({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ↔ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}))
177, 11, 16, 6vtoclgaf 3244 . . . . . . 7 (𝑦𝐴 → {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
186, 17anim12i 588 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}))
19 unss 3749 . . . . . . 7 (({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}) ↔ ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
20 sseq2 3590 . . . . . . . . 9 ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ↔ ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩))
21 df-pr 4128 . . . . . . . . . . . 12 {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} = ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩})
2221eqcomi 2619 . . . . . . . . . . 11 ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) = {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩}
2322sseq1i 3592 . . . . . . . . . 10 (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩ ↔ {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩)
24 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
25 iunopeqop.b . . . . . . . . . . . 12 𝐵 ∈ V
26 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
2725csbex 4721 . . . . . . . . . . . 12 𝑦 / 𝑥𝐵 ∈ V
28 iunopeqop.c . . . . . . . . . . . 12 𝐶 ∈ V
29 iunopeqop.d . . . . . . . . . . . 12 𝐷 ∈ V
3024, 25, 26, 27, 28, 29propssopi 4896 . . . . . . . . . . 11 ({⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩ → 𝑥 = 𝑦)
31 eqneqall 2793 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3230, 31syl 17 . . . . . . . . . 10 ({⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩ → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3323, 32sylbi 206 . . . . . . . . 9 (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩ → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3420, 33syl6bi 242 . . . . . . . 8 ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧}))))
3534com14 94 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))))
3619, 35syl5bi 231 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}) → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))))
3718, 36mpd 15 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})))
3837rexlimdva 3013 . . . 4 (𝑥𝐴 → (∃𝑦𝐴 𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})))
395, 38rexlimi 3006 . . 3 (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
40 ax-1 6 . . 3 (∃𝑧 𝐴 = {𝑧} → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
4139, 40jaoi 393 . 2 ((∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}) → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
421, 41syl 17 1 (𝐴 ≠ ∅ → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  Vcvv 3173  ⦋csb 3499   ∪ cun 3538   ⊆ wss 3540  ∅c0 3874  {csn 4125  {cpr 4127  ⟨cop 4131  ∪ ciun 4455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iun 4457 This theorem is referenced by:  funopsn  6319
 Copyright terms: Public domain W3C validator