Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunin1f Structured version   Visualization version   GIF version

Theorem iunin1f 28757
 Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4509 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypothesis
Ref Expression
iunin1f.1 𝑥𝐶
Assertion
Ref Expression
iunin1f 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)

Proof of Theorem iunin1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . . . . 6 𝑥𝑦
2 iunin1f.1 . . . . . 6 𝑥𝐶
31, 2nfel 2763 . . . . 5 𝑥 𝑦𝐶
43r19.41 3071 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵𝑦𝐶))
5 elin 3758 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
65rexbii 3023 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
7 eliun 4460 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
87anbi1i 727 . . . 4 ((𝑦 𝑥𝐴 𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵𝑦𝐶))
94, 6, 83bitr4i 291 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦𝐶))
10 eliun 4460 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
11 elin 3758 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦𝐶))
129, 10, 113bitr4i 291 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶))
1312eqriv 2607 1 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Ⅎwnfc 2738  ∃wrex 2897   ∩ cin 3539  ∪ ciun 4455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-iun 4457 This theorem is referenced by:  esum2dlem  29481
 Copyright terms: Public domain W3C validator