MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12df Structured version   Visualization version   GIF version

Theorem iuneq12df 4480
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
iuneq12df.1 𝑥𝜑
iuneq12df.2 𝑥𝐴
iuneq12df.3 𝑥𝐵
iuneq12df.4 (𝜑𝐴 = 𝐵)
iuneq12df.5 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12df (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iuneq12df
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iuneq12df.1 . . . 4 𝑥𝜑
2 iuneq12df.2 . . . 4 𝑥𝐴
3 iuneq12df.3 . . . 4 𝑥𝐵
4 iuneq12df.4 . . . 4 (𝜑𝐴 = 𝐵)
5 iuneq12df.5 . . . . 5 (𝜑𝐶 = 𝐷)
65eleq2d 2673 . . . 4 (𝜑 → (𝑦𝐶𝑦𝐷))
71, 2, 3, 4, 6rexeqbid 3128 . . 3 (𝜑 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷))
87alrimiv 1842 . 2 (𝜑 → ∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷))
9 abbi 2724 . . 3 (∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐷})
10 df-iun 4457 . . . 4 𝑥𝐴 𝐶 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶}
11 df-iun 4457 . . . 4 𝑥𝐵 𝐷 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐷}
1210, 11eqeq12i 2624 . . 3 ( 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐷})
139, 12bitr4i 266 . 2 (∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷) ↔ 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
148, 13sylib 207 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473   = wceq 1475  wnf 1699  wcel 1977  {cab 2596  wnfc 2738  wrex 2897   ciun 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-iun 4457
This theorem is referenced by:  iunxdif3  4542  iundisjf  28784  aciunf1  28845  measvuni  29604  iuneq2f  33133
  Copyright terms: Public domain W3C validator