Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunab Structured version   Visualization version   GIF version

Theorem iunab 4502
 Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2751 . . . 4 𝑦𝐴
2 nfab1 2753 . . . 4 𝑦{𝑦𝜑}
31, 2nfiun 4484 . . 3 𝑦 𝑥𝐴 {𝑦𝜑}
4 nfab1 2753 . . 3 𝑦{𝑦 ∣ ∃𝑥𝐴 𝜑}
53, 4cleqf 2776 . 2 ( 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∀𝑦(𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑}))
6 abid 2598 . . . 4 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
76rexbii 3023 . . 3 (∃𝑥𝐴 𝑦 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 𝜑)
8 eliun 4460 . . 3 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∃𝑥𝐴 𝑦 ∈ {𝑦𝜑})
9 abid 2598 . . 3 (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∃𝑥𝐴 𝜑)
107, 8, 93bitr4i 291 . 2 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑})
115, 10mpgbir 1717 1 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977  {cab 2596  ∃wrex 2897  ∪ ciun 4455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-iun 4457 This theorem is referenced by:  iunrab  4503  iunid  4511  dfimafn2  6156  rabiun  32552  dfaimafn2  39895  rnfdmpr  40325
 Copyright terms: Public domain W3C validator