Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nclem1 Structured version   Visualization version   GIF version

Theorem itgmulc2nclem1 32646
 Description: Lemma for itgmulc2nc 32648; cf. itgmulc2lem1 23404. (Contributed by Brendan Leahy, 17-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
itgmulc2nc.4 (𝜑𝐶 ∈ ℝ)
itgmulc2nc.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgmulc2nc.6 (𝜑 → 0 ≤ 𝐶)
itgmulc2nc.7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
itgmulc2nclem1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nclem1
StepHypRef Expression
1 itgmulc2nc.5 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgmulc2nc.7 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3 elrege0 12149 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
41, 2, 3sylanbrc 695 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
5 0e0icopnf 12153 . . . . . . . 8 0 ∈ (0[,)+∞)
65a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
74, 6ifclda 4070 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
87adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
9 eqid 2610 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
108, 9fmptd 6292 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
11 itgmulc2nc.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
121, 2iblpos 23365 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
1311, 12mpbid 221 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1413simprd 478 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
15 itgmulc2nc.4 . . . . 5 (𝜑𝐶 ∈ ℝ)
16 itgmulc2nc.6 . . . . 5 (𝜑 → 0 ≤ 𝐶)
17 elrege0 12149 . . . . 5 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
1815, 16, 17sylanbrc 695 . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
1910, 14, 18itg2mulc 23320 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
20 reex 9906 . . . . . . 7 ℝ ∈ V
2120a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
22 itgmulc2nc.1 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
2322adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
24 fconstmpt 5085 . . . . . . 7 (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)
2524a1i 11 . . . . . 6 (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶))
26 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2721, 23, 8, 25, 26offval2 6812 . . . . 5 (𝜑 → ((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))))
28 ovif2 6636 . . . . . . 7 (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0))
2922mul01d 10114 . . . . . . . . 9 (𝜑 → (𝐶 · 0) = 0)
3029adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐶 · 0) = 0)
3130ifeq2d 4055 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3228, 31syl5eq 2656 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3332mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3427, 33eqtrd 2644 . . . 4 (𝜑 → ((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3534fveq2d 6107 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
3619, 35eqtr3d 2646 . 2 (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
371, 11, 2itgposval 23368 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
3837oveq2d 6565 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
3915adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
4039, 1remulcld 9949 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℝ)
41 itgmulc2nc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
42 itgmulc2nc.m . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
4322, 41, 11, 42iblmulc2nc 32645 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
4416adantr 480 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
4539, 1, 44, 2mulge0d 10483 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐶 · 𝐵))
4640, 43, 45itgposval 23368 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
4736, 38, 463eqtr4d 2654 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793  ℂcc 9813  ℝcr 9814  0cc0 9815   · cmul 9820  +∞cpnf 9950   ≤ cle 9954  [,)cico 12048  MblFncmbf 23189  ∫2citg2 23191  𝐿1cibl 23192  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243 This theorem is referenced by:  itgmulc2nclem2  32647
 Copyright terms: Public domain W3C validator