MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2lr Structured version   Visualization version   GIF version

Theorem itg2lr 23303
Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2lr ((𝐺 ∈ dom ∫1𝐺𝑟𝐹) → (∫1𝐺) ∈ 𝐿)
Distinct variable groups:   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2lr
StepHypRef Expression
1 eqid 2610 . . 3 (∫1𝐺) = (∫1𝐺)
2 breq1 4586 . . . . 5 (𝑔 = 𝐺 → (𝑔𝑟𝐹𝐺𝑟𝐹))
3 fveq2 6103 . . . . . 6 (𝑔 = 𝐺 → (∫1𝑔) = (∫1𝐺))
43eqeq2d 2620 . . . . 5 (𝑔 = 𝐺 → ((∫1𝐺) = (∫1𝑔) ↔ (∫1𝐺) = (∫1𝐺)))
52, 4anbi12d 743 . . . 4 (𝑔 = 𝐺 → ((𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)) ↔ (𝐺𝑟𝐹 ∧ (∫1𝐺) = (∫1𝐺))))
65rspcev 3282 . . 3 ((𝐺 ∈ dom ∫1 ∧ (𝐺𝑟𝐹 ∧ (∫1𝐺) = (∫1𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
71, 6mpanr2 716 . 2 ((𝐺 ∈ dom ∫1𝐺𝑟𝐹) → ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
8 itg2val.1 . . 3 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))}
98itg2l 23302 . 2 ((∫1𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
107, 9sylibr 223 1 ((𝐺 ∈ dom ∫1𝐺𝑟𝐹) → (∫1𝐺) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897   class class class wbr 4583  dom cdm 5038  cfv 5804  𝑟 cofr 6794  cle 9954  1citg1 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812
This theorem is referenced by:  itg2ub  23306
  Copyright terms: Public domain W3C validator