Step | Hyp | Ref
| Expression |
1 | | i1fadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
2 | | i1frn 23250 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
4 | | i1fadd.2 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
5 | | i1frn 23250 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ran 𝐺 ∈ Fin) |
8 | | i1ff 23249 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
9 | 1, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
10 | | frn 5966 |
. . . . . . . . 9
⊢ (𝐹:ℝ⟶ℝ →
ran 𝐹 ⊆
ℝ) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
12 | 11 | sselda 3568 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
13 | 12 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
14 | 13 | recnd 9947 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
15 | | itg1add.3 |
. . . . . . . . 9
⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
16 | 1, 4, 15 | itg1addlem2 23270 |
. . . . . . . 8
⊢ (𝜑 → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
17 | 16 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
18 | | i1ff 23249 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
19 | 4, 18 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
20 | | frn 5966 |
. . . . . . . . . 10
⊢ (𝐺:ℝ⟶ℝ →
ran 𝐺 ⊆
ℝ) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐺 ⊆ ℝ) |
22 | 21 | sselda 3568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
23 | 22 | adantlr 747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
24 | 17, 13, 23 | fovrnd 6704 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
25 | 24 | recnd 9947 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
26 | 14, 25 | mulcld 9939 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
27 | 7, 26 | fsumcl 14311 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
28 | 23 | recnd 9947 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ) |
29 | 28, 25 | mulcld 9939 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
30 | 7, 29 | fsumcl 14311 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
31 | 3, 27, 30 | fsumadd 14317 |
. 2
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
32 | | itg1add.4 |
. . . 4
⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) |
33 | 1, 4, 15, 32 | itg1addlem4 23272 |
. . 3
⊢ (𝜑 →
(∫1‘(𝐹
∘𝑓 + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) |
34 | 14, 28, 25 | adddird 9944 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = ((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
35 | 34 | sumeq2dv 14281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
36 | 7, 26, 29 | fsumadd 14317 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧))) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
37 | 35, 36 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
38 | 37 | sumeq2dv 14281 |
. . 3
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
39 | 33, 38 | eqtrd 2644 |
. 2
⊢ (𝜑 →
(∫1‘(𝐹
∘𝑓 + 𝐺)) = Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
40 | | itg1val 23256 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
41 | 1, 40 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ (ran
𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
42 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐺:ℝ⟶ℝ) |
43 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ∈ Fin) |
44 | | inss2 3796 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
45 | 44 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧})) |
46 | | i1fima 23251 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑦}) ∈ dom vol) |
47 | 1, 46 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ {𝑦}) ∈ dom vol) |
48 | 47 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
49 | | i1fima 23251 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
50 | 4, 49 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
51 | 50 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
52 | | inmbl 23117 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {𝑦}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
53 | 48, 51, 52 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
54 | 11 | ssdifssd 3710 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
55 | 54 | sselda 3568 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℝ) |
56 | 55 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
57 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ⊆ ℝ) |
58 | 57 | sselda 3568 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
59 | | eldifsni 4261 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ≠ 0) |
60 | 59 | ad2antlr 759 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ≠ 0) |
61 | | simpl 472 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑦 = 0) |
62 | 61 | necon3ai 2807 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
63 | 60, 62 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
64 | 1, 4, 15 | itg1addlem3 23271 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬
(𝑦 = 0 ∧ 𝑧 = 0)) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
65 | 56, 58, 63, 64 | syl21anc 1317 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
66 | 16 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
67 | 66, 56, 58 | fovrnd 6704 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
68 | 65, 67 | eqeltrrd 2689 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
69 | 42, 43, 45, 53, 68 | itg1addlem1 23265 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
70 | | iunin2 4520 |
. . . . . . . . . 10
⊢ ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
71 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐹 ∈ dom
∫1) |
72 | 71, 46 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
73 | | mblss 23106 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∈ dom vol → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
75 | | iunid 4511 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑧 ∈ ran 𝐺{𝑧} = ran 𝐺 |
76 | 75 | imaeq2i 5383 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = (◡𝐺 “ ran 𝐺) |
77 | | imaiun 6407 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) |
78 | | cnvimarndm 5405 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 |
79 | 76, 77, 78 | 3eqtr3i 2640 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = dom 𝐺 |
80 | | fdm 5964 |
. . . . . . . . . . . . . 14
⊢ (𝐺:ℝ⟶ℝ →
dom 𝐺 =
ℝ) |
81 | 42, 80 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → dom 𝐺 = ℝ) |
82 | 79, 81 | syl5eq 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = ℝ) |
83 | 74, 82 | sseqtr4d 3605 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
84 | | df-ss 3554 |
. . . . . . . . . . 11
⊢ ((◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) ↔ ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
85 | 83, 84 | sylib 207 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
86 | 70, 85 | syl5req 2657 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
87 | 86 | fveq2d 6107 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
88 | 65 | sumeq2dv 14281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
89 | 69, 87, 88 | 3eqtr4d 2654 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) |
90 | 89 | oveq2d 6565 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧))) |
91 | 55 | recnd 9947 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℂ) |
92 | 67 | recnd 9947 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
93 | 43, 91, 92 | fsummulc2 14358 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
94 | 90, 93 | eqtrd 2644 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
95 | 94 | sumeq2dv 14281 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
96 | | difssd 3700 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) |
97 | 56 | recnd 9947 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
98 | 97, 92 | mulcld 9939 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
99 | 43, 98 | fsumcl 14311 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
100 | | dfin4 3826 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) = (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) |
101 | | inss2 3796 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) ⊆
{0} |
102 | 100, 101 | eqsstr3i 3599 |
. . . . . . 7
⊢ (ran
𝐹 ∖ (ran 𝐹 ∖ {0})) ⊆
{0} |
103 | 102 | sseli 3564 |
. . . . . 6
⊢ (𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) → 𝑦 ∈ {0}) |
104 | | elsni 4142 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {0} → 𝑦 = 0) |
105 | 104 | ad2antlr 759 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 = 0) |
106 | 105 | oveq1d 6564 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
107 | 16 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
108 | | 0re 9919 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
109 | 105, 108 | syl6eqel 2696 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
110 | 22 | adantlr 747 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
111 | 107, 109,
110 | fovrnd 6704 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
112 | 111 | recnd 9947 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
113 | 112 | mul02d 10113 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (0 · (𝑦𝐼𝑧)) = 0) |
114 | 106, 113 | eqtrd 2644 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = 0) |
115 | 114 | sumeq2dv 14281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺0) |
116 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → ran 𝐺 ∈ Fin) |
117 | 116 | olcd 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → (ran 𝐺 ⊆ (ℤ≥‘0)
∨ ran 𝐺 ∈
Fin)) |
118 | | sumz 14300 |
. . . . . . . 8
⊢ ((ran
𝐺 ⊆
(ℤ≥‘0) ∨ ran 𝐺 ∈ Fin) → Σ𝑧 ∈ ran 𝐺0 = 0) |
119 | 117, 118 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺0 = 0) |
120 | 115, 119 | eqtrd 2644 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
121 | 103, 120 | sylan2 490 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0}))) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
122 | 96, 99, 121, 3 | fsumss 14303 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
123 | 41, 95, 122 | 3eqtrd 2648 |
. . 3
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
124 | | itg1val 23256 |
. . . . 5
⊢ (𝐺 ∈ dom ∫1
→ (∫1‘𝐺) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
125 | 4, 124 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑧 ∈ (ran
𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
126 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝐹:ℝ⟶ℝ) |
127 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ∈ Fin) |
128 | | inss1 3795 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦}) |
129 | 128 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦})) |
130 | 47 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
131 | 50 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
132 | 130, 131,
52 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
133 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ⊆ ℝ) |
134 | 133 | sselda 3568 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
135 | 21 | ssdifssd 3710 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆
ℝ) |
136 | 135 | sselda 3568 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℝ) |
137 | 136 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
138 | | eldifsni 4261 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ≠ 0) |
139 | 138 | ad2antlr 759 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ≠ 0) |
140 | | simpr 476 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑧 = 0) |
141 | 140 | necon3ai 2807 |
. . . . . . . . . . . 12
⊢ (𝑧 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
142 | 139, 141 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
143 | 134, 137,
142, 64 | syl21anc 1317 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
144 | 16 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
145 | 144, 134,
137 | fovrnd 6704 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
146 | 143, 145 | eqeltrrd 2689 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
147 | 126, 127,
129, 132, 146 | itg1addlem1 23265 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
148 | | incom 3767 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
149 | 148 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran 𝐹 → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦}))) |
150 | 149 | iuneq2i 4475 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ∪
𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
151 | | iunin2 4520 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
152 | 150, 151 | eqtri 2632 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
153 | | cnvimass 5404 |
. . . . . . . . . . . . 13
⊢ (◡𝐺 “ {𝑧}) ⊆ dom 𝐺 |
154 | 19, 80 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = ℝ) |
155 | 154 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐺 = ℝ) |
156 | 153, 155 | syl5sseq 3616 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
157 | | iunid 4511 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ ran 𝐹{𝑦} = ran 𝐹 |
158 | 157 | imaeq2i 5383 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = (◡𝐹 “ ran 𝐹) |
159 | | imaiun 6407 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) |
160 | | cnvimarndm 5405 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
161 | 158, 159,
160 | 3eqtr3i 2640 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = dom 𝐹 |
162 | | fdm 5964 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶ℝ →
dom 𝐹 =
ℝ) |
163 | 9, 162 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = ℝ) |
164 | 163 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐹 = ℝ) |
165 | 161, 164 | syl5eq 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = ℝ) |
166 | 156, 165 | sseqtr4d 3605 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
167 | | df-ss 3554 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) ↔ ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
168 | 166, 167 | sylib 207 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
169 | 152, 168 | syl5req 2657 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) = ∪
𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
170 | 169 | fveq2d 6107 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
171 | 143 | sumeq2dv 14281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
172 | 147, 170,
171 | 3eqtr4d 2654 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) |
173 | 172 | oveq2d 6565 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧))) |
174 | 136 | recnd 9947 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℂ) |
175 | 145 | recnd 9947 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
176 | 127, 174,
175 | fsummulc2 14358 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
177 | 173, 176 | eqtrd 2644 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
178 | 177 | sumeq2dv 14281 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
179 | | difssd 3700 |
. . . . . 6
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) |
180 | 174 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
181 | 180, 175 | mulcld 9939 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
182 | 127, 181 | fsumcl 14311 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
183 | | dfin4 3826 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) = (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) |
184 | | inss2 3796 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) ⊆
{0} |
185 | 183, 184 | eqsstr3i 3599 |
. . . . . . . 8
⊢ (ran
𝐺 ∖ (ran 𝐺 ∖ {0})) ⊆
{0} |
186 | 185 | sseli 3564 |
. . . . . . 7
⊢ (𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) → 𝑧 ∈ {0}) |
187 | | elsni 4142 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {0} → 𝑧 = 0) |
188 | 187 | ad2antlr 759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 = 0) |
189 | 188 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
190 | 16 | ad2antrr 758 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
191 | 12 | adantlr 747 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
192 | 188, 108 | syl6eqel 2696 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
193 | 190, 191,
192 | fovrnd 6704 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
194 | 193 | recnd 9947 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
195 | 194 | mul02d 10113 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (0 · (𝑦𝐼𝑧)) = 0) |
196 | 189, 195 | eqtrd 2644 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = 0) |
197 | 196 | sumeq2dv 14281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹0) |
198 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → ran 𝐹 ∈ Fin) |
199 | 198 | olcd 407 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → (ran 𝐹 ⊆ (ℤ≥‘0)
∨ ran 𝐹 ∈
Fin)) |
200 | | sumz 14300 |
. . . . . . . . 9
⊢ ((ran
𝐹 ⊆
(ℤ≥‘0) ∨ ran 𝐹 ∈ Fin) → Σ𝑦 ∈ ran 𝐹0 = 0) |
201 | 199, 200 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹0 = 0) |
202 | 197, 201 | eqtrd 2644 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
203 | 186, 202 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0}))) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
204 | 179, 182,
203, 6 | fsumss 14303 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
205 | 22 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
206 | 205 | recnd 9947 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
207 | 16 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
208 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ ℝ) |
209 | 208 | sselda 3568 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
210 | 207, 209,
205 | fovrnd 6704 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
211 | 210 | recnd 9947 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
212 | 206, 211 | mulcld 9939 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
213 | 212 | anasss 677 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹)) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
214 | 6, 3, 213 | fsumcom 14349 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
215 | 204, 214 | eqtrd 2644 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
216 | 125, 178,
215 | 3eqtrd 2648 |
. . 3
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
217 | 123, 216 | oveq12d 6567 |
. 2
⊢ (𝜑 →
((∫1‘𝐹) + (∫1‘𝐺)) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
218 | 31, 39, 217 | 3eqtr4d 2654 |
1
⊢ (𝜑 →
(∫1‘(𝐹
∘𝑓 + 𝐺)) = ((∫1‘𝐹) +
(∫1‘𝐺))) |