Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrdi Structured version   Visualization version   GIF version

Theorem iswrdi 13164
 Description: A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
iswrdi (𝑊:(0..^𝐿)⟶𝑆𝑊 ∈ Word 𝑆)

Proof of Theorem iswrdi
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . 5 (𝑙 = 𝐿 → (0..^𝑙) = (0..^𝐿))
21feq2d 5944 . . . 4 (𝑙 = 𝐿 → (𝑊:(0..^𝑙)⟶𝑆𝑊:(0..^𝐿)⟶𝑆))
32rspcev 3282 . . 3 ((𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
4 0nn0 11184 . . . 4 0 ∈ ℕ0
5 fzo0n0 12387 . . . . . . . . 9 ((0..^𝐿) ≠ ∅ ↔ 𝐿 ∈ ℕ)
6 nnnn0 11176 . . . . . . . . 9 (𝐿 ∈ ℕ → 𝐿 ∈ ℕ0)
75, 6sylbi 206 . . . . . . . 8 ((0..^𝐿) ≠ ∅ → 𝐿 ∈ ℕ0)
87necon1bi 2810 . . . . . . 7 𝐿 ∈ ℕ0 → (0..^𝐿) = ∅)
9 fzo0 12361 . . . . . . 7 (0..^0) = ∅
108, 9syl6eqr 2662 . . . . . 6 𝐿 ∈ ℕ0 → (0..^𝐿) = (0..^0))
1110feq2d 5944 . . . . 5 𝐿 ∈ ℕ0 → (𝑊:(0..^𝐿)⟶𝑆𝑊:(0..^0)⟶𝑆))
1211biimpa 500 . . . 4 ((¬ 𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → 𝑊:(0..^0)⟶𝑆)
13 oveq2 6557 . . . . . 6 (𝑙 = 0 → (0..^𝑙) = (0..^0))
1413feq2d 5944 . . . . 5 (𝑙 = 0 → (𝑊:(0..^𝑙)⟶𝑆𝑊:(0..^0)⟶𝑆))
1514rspcev 3282 . . . 4 ((0 ∈ ℕ0𝑊:(0..^0)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
164, 12, 15sylancr 694 . . 3 ((¬ 𝐿 ∈ ℕ0𝑊:(0..^𝐿)⟶𝑆) → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
173, 16pm2.61ian 827 . 2 (𝑊:(0..^𝐿)⟶𝑆 → ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
18 iswrd 13162 . 2 (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
1917, 18sylibr 223 1 (𝑊:(0..^𝐿)⟶𝑆𝑊 ∈ Word 𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  ∅c0 3874  ⟶wf 5800  (class class class)co 6549  0cc0 9815  ℕcn 10897  ℕ0cn0 11169  ..^cfzo 12334  Word cword 13146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-word 13154 This theorem is referenced by:  iswrdb  13166  snopiswrd  13169  wrdv  13175  iswrdsymb  13177  iswrddm0  13184  ffz0iswrd  13187  wrdnval  13190  ccatcl  13212  swrdcl  13271  revcl  13361  repsw  13373  repsdf2  13376  cshf1  13407  wrdco  13428  wrdlen2i  13534  pmtrdifwrdellem1  17724  psgnunilem5  17737  ablfaclem2  18308  ablfac2  18311  wrdupgr  25752  wrdumgr  25763  wrdumgra  25845  wlkntrllem1  26089  is2wlk  26095  constr2wlk  26128  redwlk  26136  constr3trllem1  26178  wlkiswwlk2lem5  26223  clwlkisclwwlklem2a  26313  clwlkfclwwlk2wrd  26367  clwlkf1clwwlklem3  26375  eupatrl  26495  subiwrd  29774  sseqp1  29784  wrdres  29943  ofcccat  29946  signstf  29969  signshwrd  29992  wrdred1  40240  crctcshtrl  41026  1wlkiswwlks2lem5  41070  1wlkiswwlksupgr2  41074  clwlkclwwlklem2a  41207  clwlksfclwwlk2wrd  41265  clwlksf1clwwlklem3  41274  upgriseupth  41375
 Copyright terms: Public domain W3C validator