Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuvtxa Structured version   Visualization version   GIF version

Theorem isuvtxa 40621
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.)
Hypotheses
Ref Expression
uvtxael.v 𝑉 = (Vtx‘𝐺)
isuvtxa.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isuvtxa (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑒,𝐸   𝑒,𝐺,𝑘,𝑣   𝑒,𝑉,𝑘   𝑒,𝑊,𝑘,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑘)

Proof of Theorem isuvtxa
StepHypRef Expression
1 uvtxael.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxaval 40613 . 2 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)})
3 isuvtxa.e . . . . . . 7 𝐸 = (Edg‘𝐺)
41, 3nbgrel 40564 . . . . . 6 (𝐺𝑊 → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
54ad2antrr 758 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
6 df-3an 1033 . . . . . 6 (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒))
7 prcom 4211 . . . . . . . . 9 {𝑘, 𝑣} = {𝑣, 𝑘}
87sseq1i 3592 . . . . . . . 8 ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒)
98rexbii 3023 . . . . . . 7 (∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)
10 simpr 476 . . . . . . . . . 10 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
11 eldifi 3694 . . . . . . . . . 10 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑉)
1210, 11anim12ci 589 . . . . . . . . 9 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘𝑉𝑣𝑉))
13 eldifsni 4261 . . . . . . . . . 10 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑣)
1413adantl 481 . . . . . . . . 9 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘𝑣)
1512, 14jca 553 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣))
1615biantrurd 528 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
179, 16syl5rbb 272 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
186, 17syl5bb 271 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
195, 18bitrd 267 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
2019ralbidva 2968 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
2120rabbidva 3163 . 2 (𝐺𝑊 → {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
222, 21eqtrd 2644 1 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  wss 3540  {csn 4125  {cpr 4127  cfv 5804  (class class class)co 6549  Vtxcvtx 25673  Edgcedga 25792   NeighbVtx cnbgr 40550  UnivVtxcuvtxa 40551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-nbgr 40554  df-uvtxa 40556
This theorem is referenced by:  uvtxael1  40622
  Copyright terms: Public domain W3C validator