MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Visualization version   GIF version

Theorem isunit 18480
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1 𝑈 = (Unit‘𝑅)
unit.2 1 = (1r𝑅)
unit.3 = (∥r𝑅)
unit.4 𝑆 = (oppr𝑅)
unit.5 𝐸 = (∥r𝑆)
Assertion
Ref Expression
isunit (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))

Proof of Theorem isunit
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6130 . . . 4 (𝑋 ∈ (Unit‘𝑅) → 𝑅 ∈ dom Unit)
2 unit.1 . . . 4 𝑈 = (Unit‘𝑅)
31, 2eleq2s 2706 . . 3 (𝑋𝑈𝑅 ∈ dom Unit)
43elexd 3187 . 2 (𝑋𝑈𝑅 ∈ V)
5 df-br 4584 . . . 4 (𝑋 1 ↔ ⟨𝑋, 1 ⟩ ∈ )
6 elfvdm 6130 . . . . . 6 (⟨𝑋, 1 ⟩ ∈ (∥r𝑅) → 𝑅 ∈ dom ∥r)
7 unit.3 . . . . . 6 = (∥r𝑅)
86, 7eleq2s 2706 . . . . 5 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ dom ∥r)
98elexd 3187 . . . 4 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ V)
105, 9sylbi 206 . . 3 (𝑋 1𝑅 ∈ V)
1110adantr 480 . 2 ((𝑋 1𝑋𝐸 1 ) → 𝑅 ∈ V)
12 fveq2 6103 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
1312, 7syl6eqr 2662 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r𝑟) = )
14 fveq2 6103 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
15 unit.4 . . . . . . . . . . . 12 𝑆 = (oppr𝑅)
1614, 15syl6eqr 2662 . . . . . . . . . . 11 (𝑟 = 𝑅 → (oppr𝑟) = 𝑆)
1716fveq2d 6107 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r𝑆))
18 unit.5 . . . . . . . . . 10 𝐸 = (∥r𝑆)
1917, 18syl6eqr 2662 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = 𝐸)
2013, 19ineq12d 3777 . . . . . . . 8 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
2120cnveqd 5220 . . . . . . 7 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
22 fveq2 6103 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
23 unit.2 . . . . . . . . 9 1 = (1r𝑅)
2422, 23syl6eqr 2662 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
2524sneqd 4137 . . . . . . 7 (𝑟 = 𝑅 → {(1r𝑟)} = { 1 })
2621, 25imaeq12d 5386 . . . . . 6 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (( 𝐸) “ { 1 }))
27 df-unit 18465 . . . . . 6 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
28 fvex 6113 . . . . . . . . . 10 (∥r𝑅) ∈ V
297, 28eqeltri 2684 . . . . . . . . 9 ∈ V
3029inex1 4727 . . . . . . . 8 ( 𝐸) ∈ V
3130cnvex 7006 . . . . . . 7 ( 𝐸) ∈ V
3231imaex 6996 . . . . . 6 (( 𝐸) “ { 1 }) ∈ V
3326, 27, 32fvmpt 6191 . . . . 5 (𝑅 ∈ V → (Unit‘𝑅) = (( 𝐸) “ { 1 }))
342, 33syl5eq 2656 . . . 4 (𝑅 ∈ V → 𝑈 = (( 𝐸) “ { 1 }))
3534eleq2d 2673 . . 3 (𝑅 ∈ V → (𝑋𝑈𝑋 ∈ (( 𝐸) “ { 1 })))
36 inss1 3795 . . . . . 6 ( 𝐸) ⊆
377reldvdsr 18467 . . . . . 6 Rel
38 relss 5129 . . . . . 6 (( 𝐸) ⊆ → (Rel → Rel ( 𝐸)))
3936, 37, 38mp2 9 . . . . 5 Rel ( 𝐸)
40 eliniseg2 5424 . . . . 5 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
4139, 40ax-mp 5 . . . 4 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 )
42 brin 4634 . . . 4 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4341, 42bitri 263 . . 3 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 ))
4435, 43syl6bb 275 . 2 (𝑅 ∈ V → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
454, 11, 44pm5.21nii 367 1 (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  {csn 4125  cop 4131   class class class wbr 4583  ccnv 5037  dom cdm 5038  cima 5041  Rel wrel 5043  cfv 5804  1rcur 18324  opprcoppr 18445  rcdsr 18461  Unitcui 18462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-dvdsr 18464  df-unit 18465
This theorem is referenced by:  1unit  18481  unitcl  18482  opprunit  18484  crngunit  18485  unitmulcl  18487  unitgrp  18490  unitnegcl  18504  unitpropd  18520  isdrng2  18580  subrguss  18618  subrgunit  18621  fidomndrng  19128  invrvald  20301  elrhmunit  29151
  Copyright terms: Public domain W3C validator