Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumnn0nn Structured version   Visualization version   GIF version

Theorem isumnn0nn 14413
 Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumnn0nn.1 (𝑘 = 0 → 𝐴 = 𝐵)
isumnn0nn.2 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = 𝐴)
isumnn0nn.3 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
isumnn0nn.4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumnn0nn (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴))
Distinct variable groups:   𝑘,𝐹   𝐵,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumnn0nn
StepHypRef Expression
1 nn0uz 11598 . . 3 0 = (ℤ‘0)
2 0zd 11266 . . 3 (𝜑 → 0 ∈ ℤ)
3 isumnn0nn.2 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = 𝐴)
4 isumnn0nn.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5 isumnn0nn.4 . . 3 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
61, 2, 3, 4, 5isum1p 14412 . 2 (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = ((𝐹‘0) + Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴))
7 0nn0 11184 . . . 4 0 ∈ ℕ0
83ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹𝑘) = 𝐴)
9 fveq2 6103 . . . . . 6 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
10 isumnn0nn.1 . . . . . 6 (𝑘 = 0 → 𝐴 = 𝐵)
119, 10eqeq12d 2625 . . . . 5 (𝑘 = 0 → ((𝐹𝑘) = 𝐴 ↔ (𝐹‘0) = 𝐵))
1211rspcv 3278 . . . 4 (0 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝐹𝑘) = 𝐴 → (𝐹‘0) = 𝐵))
137, 8, 12mpsyl 66 . . 3 (𝜑 → (𝐹‘0) = 𝐵)
14 0p1e1 11009 . . . . . . 7 (0 + 1) = 1
1514fveq2i 6106 . . . . . 6 (ℤ‘(0 + 1)) = (ℤ‘1)
16 nnuz 11599 . . . . . 6 ℕ = (ℤ‘1)
1715, 16eqtr4i 2635 . . . . 5 (ℤ‘(0 + 1)) = ℕ
1817sumeq1i 14276 . . . 4 Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴
1918a1i 11 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴)
2013, 19oveq12d 6567 . 2 (𝜑 → ((𝐹‘0) + Σ𝑘 ∈ (ℤ‘(0 + 1))𝐴) = (𝐵 + Σ𝑘 ∈ ℕ 𝐴))
216, 20eqtrd 2644 1 (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818  ℕcn 10897  ℕ0cn0 11169  ℤ≥cuz 11563  seqcseq 12663   ⇝ cli 14063  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator