Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuhgra Structured version   Visualization version   GIF version

Theorem isuhgra 25827
 Description: The property of being an undirected hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.)
Assertion
Ref Expression
isuhgra ((𝑉𝑊𝐸𝑋) → (𝑉 UHGrph 𝐸𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isuhgra
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑒 = 𝐸)
2 dmeq 5246 . . . 4 (𝑒 = 𝐸 → dom 𝑒 = dom 𝐸)
32adantl 481 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → dom 𝑒 = dom 𝐸)
4 pweq 4111 . . . . 5 (𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉)
54difeq1d 3689 . . . 4 (𝑣 = 𝑉 → (𝒫 𝑣 ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
65adantr 480 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝒫 𝑣 ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
71, 3, 6feq123d 5947 . 2 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
8 df-uhgra 25821 . 2 UHGrph = {⟨𝑣, 𝑒⟩ ∣ 𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
97, 8brabga 4914 1 ((𝑉𝑊𝐸𝑋) → (𝑉 UHGrph 𝐸𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537  ∅c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  dom cdm 5038  ⟶wf 5800   UHGrph cuhg 25819 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808  df-uhgra 25821 This theorem is referenced by:  uhgraf  25828  ushgrauhgra  25832  uhgraop  25833  uhgraeq12d  25836  uhgrares  25837  uhgra0  25838  uhgra0v  25839  uhgraun  25840  umisuhgra  25856  uhgruhgra  40375
 Copyright terms: Public domain W3C validator