Step | Hyp | Ref
| Expression |
1 | | isucn2.1 |
. . 3
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
2 | | isucn2.2 |
. . 3
⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
3 | | isucn 21892 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))))) |
4 | 1, 2, 3 | syl2anc 691 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))))) |
5 | | isucn2.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ (fBas‘(𝑌 × 𝑌))) |
6 | | ssfg 21486 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ (fBas‘(𝑌 × 𝑌)) → 𝑆 ⊆ ((𝑌 × 𝑌)filGen𝑆)) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ ((𝑌 × 𝑌)filGen𝑆)) |
8 | | isucn2.v |
. . . . . . . . . . 11
⊢ 𝑉 = ((𝑌 × 𝑌)filGen𝑆) |
9 | 7, 8 | syl6sseqr 3615 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ 𝑉) |
10 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → 𝑆 ⊆ 𝑉) |
11 | 10 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) → 𝑆 ⊆ 𝑉) |
12 | 11 | sselda 3568 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝑉) |
13 | | simplr 788 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) |
14 | | breq 4585 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑠 → ((𝐹‘𝑥)𝑣(𝐹‘𝑦) ↔ (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
15 | 14 | imbi2d 329 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑠 → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
16 | 15 | ralbidv 2969 |
. . . . . . . . 9
⊢ (𝑣 = 𝑠 → (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
17 | 16 | rexralbidv 3040 |
. . . . . . . 8
⊢ (𝑣 = 𝑠 → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
18 | 17 | rspcva 3280 |
. . . . . . 7
⊢ ((𝑠 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
19 | 12, 13, 18 | syl2anc 691 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
20 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) |
21 | | isucn2.u |
. . . . . . . . . . . 12
⊢ 𝑈 = ((𝑋 × 𝑋)filGen𝑅) |
22 | 20, 21 | syl6eleq 2698 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅)) |
23 | | isucn2.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ (fBas‘(𝑋 × 𝑋))) |
24 | | elfg 21485 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅) ↔ (𝑢 ⊆ (𝑋 × 𝑋) ∧ ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢))) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅) ↔ (𝑢 ⊆ (𝑋 × 𝑋) ∧ ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢))) |
26 | 25 | simplbda 652 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅)) → ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢) |
27 | 22, 26 | syldan 486 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢) |
28 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ⊆ 𝑢 → 𝑟 ⊆ 𝑢) |
29 | 28 | ssbrd 4626 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ⊆ 𝑢 → (𝑥𝑟𝑦 → 𝑥𝑢𝑦)) |
30 | 29 | imim1d 80 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ⊆ 𝑢 → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
32 | 31 | ralrimivw 2950 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → ∀𝑦 ∈ 𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
33 | 32 | ralrimivw 2950 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
34 | | ralim 2932 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
35 | 34 | ralimi 2936 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
36 | | ralim 2932 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
37 | 33, 35, 36 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
38 | 37 | ex 449 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝑟 ⊆ 𝑢 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
39 | 38 | reximdva 3000 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃𝑟 ∈ 𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃𝑟 ∈ 𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
41 | 27, 40 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑟 ∈ 𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
42 | | r19.37v 3068 |
. . . . . . . . 9
⊢
(∃𝑟 ∈
𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
44 | 43 | rexlimdva 3013 |
. . . . . . 7
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
45 | 44 | ad3antrrr 762 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
46 | 19, 45 | mpd 15 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
47 | 46 | ralrimiva 2949 |
. . . 4
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) → ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
48 | | ssfg 21486 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ (fBas‘(𝑋 × 𝑋)) → 𝑅 ⊆ ((𝑋 × 𝑋)filGen𝑅)) |
49 | 23, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ⊆ ((𝑋 × 𝑋)filGen𝑅)) |
50 | 49, 21 | syl6sseqr 3615 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ 𝑈) |
51 | | ssrexv 3630 |
. . . . . . . . . 10
⊢ (𝑅 ⊆ 𝑈 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
52 | | breq 4585 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑢 → (𝑥𝑟𝑦 ↔ 𝑥𝑢𝑦)) |
53 | 52 | imbi1d 330 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑢 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
54 | 53 | 2ralbidv 2972 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑢 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
55 | 54 | cbvrexv 3148 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ↔ ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
56 | 51, 55 | syl6ib 240 |
. . . . . . . . 9
⊢ (𝑅 ⊆ 𝑈 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
57 | 50, 56 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
58 | 57 | ralimdv 2946 |
. . . . . . 7
⊢ (𝜑 → (∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
59 | 58 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
60 | | nfv 1830 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠(𝜑 ∧ 𝐹:𝑋⟶𝑌) |
61 | | nfra1 2925 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) |
62 | 60, 61 | nfan 1816 |
. . . . . . . . . 10
⊢
Ⅎ𝑠((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
63 | | nfv 1830 |
. . . . . . . . . 10
⊢
Ⅎ𝑠 𝑣 ∈ 𝑉 |
64 | 62, 63 | nfan 1816 |
. . . . . . . . 9
⊢
Ⅎ𝑠(((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) |
65 | | simp-4r 803 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
66 | | simplr 788 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → 𝑠 ∈ 𝑆) |
67 | | rspa 2914 |
. . . . . . . . . . 11
⊢
((∀𝑠 ∈
𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ∧ 𝑠 ∈ 𝑆) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
68 | 65, 66, 67 | syl2anc 691 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
69 | | simp-4l 802 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (𝜑 ∧ 𝐹:𝑋⟶𝑌)) |
70 | | simpr 476 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → 𝑠 ⊆ 𝑣) |
71 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ⊆ 𝑣 → 𝑠 ⊆ 𝑣) |
72 | 71 | ssbrd 4626 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ⊆ 𝑣 → ((𝐹‘𝑥)𝑠(𝐹‘𝑦) → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) |
73 | 72 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ((𝐹‘𝑥)𝑠(𝐹‘𝑦) → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) |
74 | 73 | imim2d 55 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) |
75 | 74 | ralimdv 2946 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) |
76 | 75 | ralimdv 2946 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) |
77 | 76 | reximdv 2999 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) |
78 | 69, 66, 70, 77 | syl21anc 1317 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) |
79 | 68, 78 | mpd 15 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) |
80 | 5 | ad3antrrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → 𝑆 ∈ (fBas‘(𝑌 × 𝑌))) |
81 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
82 | 81, 8 | syl6eleq 2698 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆)) |
83 | | elfg 21485 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (fBas‘(𝑌 × 𝑌)) → (𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆) ↔ (𝑣 ⊆ (𝑌 × 𝑌) ∧ ∃𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣))) |
84 | 83 | simplbda 652 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (fBas‘(𝑌 × 𝑌)) ∧ 𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆)) → ∃𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣) |
85 | 80, 82, 84 | syl2anc 691 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → ∃𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣) |
86 | 64, 79, 85 | r19.29af 3058 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) |
87 | 86 | ralrimiva 2949 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) |
88 | 87 | ex 449 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) |
89 | 59, 88 | syld 46 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) |
90 | 89 | imp 444 |
. . . 4
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) |
91 | 47, 90 | impbida 873 |
. . 3
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
92 | 91 | pm5.32da 671 |
. 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
93 | 4, 92 | bitrd 267 |
1
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |