Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istrg | Structured version Visualization version GIF version |
Description: Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
istrg | ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3758 | . . 3 ⊢ (𝑅 ∈ (TopGrp ∩ Ring) ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring)) | |
2 | 1 | anbi1i 727 | . 2 ⊢ ((𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd)) |
3 | fveq2 6103 | . . . . 5 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
4 | istrg.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
5 | 3, 4 | syl6eqr 2662 | . . . 4 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝑀) |
6 | 5 | eleq1d 2672 | . . 3 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ TopMnd ↔ 𝑀 ∈ TopMnd)) |
7 | df-trg 21773 | . . 3 ⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd} | |
8 | 6, 7 | elrab2 3333 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ (TopGrp ∩ Ring) ∧ 𝑀 ∈ TopMnd)) |
9 | df-3an 1033 | . 2 ⊢ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd) ↔ ((𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ TopMnd)) | |
10 | 2, 8, 9 | 3bitr4i 291 | 1 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 ‘cfv 5804 mulGrpcmgp 18312 Ringcrg 18370 TopMndctmd 21684 TopGrpctgp 21685 TopRingctrg 21769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-trg 21773 |
This theorem is referenced by: trgtmd 21778 trgtgp 21781 trgring 21784 nrgtrg 22304 |
Copyright terms: Public domain | W3C validator |