Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ist1 | Structured version Visualization version GIF version |
Description: The predicate 𝐽 is T1. (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
ist0.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ist1 | ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4380 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
2 | ist0.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | syl6eqr 2662 | . . . . 5 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
4 | 3 | eleq2d 2673 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝑎 ∈ ∪ 𝑥 ↔ 𝑎 ∈ 𝑋)) |
5 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = 𝐽 → (Clsd‘𝑥) = (Clsd‘𝐽)) | |
6 | 5 | eleq2d 2673 | . . . 4 ⊢ (𝑥 = 𝐽 → ({𝑎} ∈ (Clsd‘𝑥) ↔ {𝑎} ∈ (Clsd‘𝐽))) |
7 | 4, 6 | imbi12d 333 | . . 3 ⊢ (𝑥 = 𝐽 → ((𝑎 ∈ ∪ 𝑥 → {𝑎} ∈ (Clsd‘𝑥)) ↔ (𝑎 ∈ 𝑋 → {𝑎} ∈ (Clsd‘𝐽)))) |
8 | 7 | ralbidv2 2967 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥) ↔ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
9 | df-t1 20928 | . 2 ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} | |
10 | 8, 9 | elrab2 3333 | 1 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑎 ∈ 𝑋 {𝑎} ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {csn 4125 ∪ cuni 4372 ‘cfv 5804 Topctop 20517 Clsdccld 20630 Frect1 20921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-t1 20928 |
This theorem is referenced by: t1sncld 20940 t1ficld 20941 t1top 20944 ist1-2 20961 cnt1 20964 ordtt1 20993 qtopt1 29230 onint1 31618 |
Copyright terms: Public domain | W3C validator |