MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmnd Structured version   Visualization version   GIF version

Theorem issubmnd 17141
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b 𝐵 = (Base‘𝐺)
issubmnd.p + = (+g𝐺)
issubmnd.z 0 = (0g𝐺)
issubmnd.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issubmnd ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦

Proof of Theorem issubmnd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 788 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mnd)
2 simprl 790 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
3 simpll2 1094 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
4 issubmnd.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
5 issubmnd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5ressbas2 15758 . . . . . . 7 (𝑆𝐵𝑆 = (Base‘𝐻))
73, 6syl 17 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
82, 7eleqtrd 2690 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
9 simprr 792 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
109, 7eleqtrd 2690 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
11 eqid 2610 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
12 eqid 2610 . . . . . 6 (+g𝐻) = (+g𝐻)
1311, 12mndcl 17124 . . . . 5 ((𝐻 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
141, 8, 10, 13syl3anc 1318 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
15 fvex 6113 . . . . . . . . . 10 (Base‘𝐺) ∈ V
165, 15eqeltri 2684 . . . . . . . . 9 𝐵 ∈ V
1716ssex 4730 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
18173ad2ant2 1076 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → 𝑆 ∈ V)
19 issubmnd.p . . . . . . . 8 + = (+g𝐺)
204, 19ressplusg 15818 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2118, 20syl 17 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → + = (+g𝐻))
2221ad2antrr 758 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → + = (+g𝐻))
2322oveqd 6566 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
2414, 23, 73eltr4d 2703 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2524ralrimivva 2954 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
26 simpl2 1058 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆𝐵)
2726, 6syl 17 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
2821adantr 480 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → + = (+g𝐻))
29 ovrspc2v 6571 . . . . . 6 (((𝑢𝑆𝑣𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
3029ancoms 468 . . . . 5 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢 + 𝑣) ∈ 𝑆)
31303impb 1252 . . . 4 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
32313adant1l 1310 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
3326sseld 3567 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢𝑆𝑢𝐵))
3426sseld 3567 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑣𝑆𝑣𝐵))
3526sseld 3567 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑤𝑆𝑤𝐵))
3633, 34, 353anim123d 1398 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3736imp 444 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
38 simpl1 1057 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐺 ∈ Mnd)
395, 19mndass 17125 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4038, 39sylan 487 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
4137, 40syldan 486 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
42 simpl3 1059 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 0𝑆)
4326sselda 3568 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → 𝑢𝐵)
44 issubmnd.z . . . . . 6 0 = (0g𝐺)
455, 19, 44mndlid 17134 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → ( 0 + 𝑢) = 𝑢)
4638, 45sylan 487 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝐵) → ( 0 + 𝑢) = 𝑢)
4743, 46syldan 486 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → ( 0 + 𝑢) = 𝑢)
485, 19, 44mndrid 17135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → (𝑢 + 0 ) = 𝑢)
4938, 48sylan 487 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝐵) → (𝑢 + 0 ) = 𝑢)
5043, 49syldan 486 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → (𝑢 + 0 ) = 𝑢)
5127, 28, 32, 41, 42, 47, 50ismndd 17136 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mnd)
5225, 51impbida 873 1 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118
This theorem is referenced by:  issubm2  17171
  Copyright terms: Public domain W3C validator