MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issrg Structured version   Visualization version   GIF version

Theorem issrg 18330
Description: The predicate "is a semiring." (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypotheses
Ref Expression
issrg.b 𝐵 = (Base‘𝑅)
issrg.g 𝐺 = (mulGrp‘𝑅)
issrg.p + = (+g𝑅)
issrg.t · = (.r𝑅)
issrg.0 0 = (0g𝑅)
Assertion
Ref Expression
issrg (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem issrg
Dummy variables 𝑛 𝑏 𝑝 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issrg.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
21eleq1i 2679 . . . . 5 (𝐺 ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd)
32bicomi 213 . . . 4 ((mulGrp‘𝑅) ∈ Mnd ↔ 𝐺 ∈ Mnd)
4 issrg.b . . . . . 6 𝐵 = (Base‘𝑅)
5 fvex 6113 . . . . . 6 (Base‘𝑅) ∈ V
64, 5eqeltri 2684 . . . . 5 𝐵 ∈ V
7 issrg.p . . . . . 6 + = (+g𝑅)
8 fvex 6113 . . . . . 6 (+g𝑅) ∈ V
97, 8eqeltri 2684 . . . . 5 + ∈ V
10 issrg.t . . . . . . . 8 · = (.r𝑅)
11 fvex 6113 . . . . . . . 8 (.r𝑅) ∈ V
1210, 11eqeltri 2684 . . . . . . 7 · ∈ V
1312a1i 11 . . . . . 6 ((𝑏 = 𝐵𝑝 = + ) → · ∈ V)
14 issrg.0 . . . . . . . . 9 0 = (0g𝑅)
15 fvex 6113 . . . . . . . . 9 (0g𝑅) ∈ V
1614, 15eqeltri 2684 . . . . . . . 8 0 ∈ V
1716a1i 11 . . . . . . 7 (((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) → 0 ∈ V)
18 simplll 794 . . . . . . . 8 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑏 = 𝐵)
19 simplr 788 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑡 = · )
20 eqidd 2611 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑥 = 𝑥)
21 simpllr 795 . . . . . . . . . . . . . . 15 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑝 = + )
2221oveqd 6566 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧))
2319, 20, 22oveq123d 6570 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧)))
2419oveqd 6566 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦))
2519oveqd 6566 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧))
2621, 24, 25oveq123d 6570 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2723, 26eqeq12d 2625 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))))
2821oveqd 6566 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
29 eqidd 2611 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑧 = 𝑧)
3019, 28, 29oveq123d 6570 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧))
3119oveqd 6566 . . . . . . . . . . . . . 14 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧))
3221, 25, 31oveq123d 6570 . . . . . . . . . . . . 13 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3330, 32eqeq12d 2625 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
3427, 33anbi12d 743 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
3518, 34raleqbidv 3129 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
3618, 35raleqbidv 3129 . . . . . . . . 9 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
37 simpr 476 . . . . . . . . . . . 12 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑛 = 0 )
3819, 37, 20oveq123d 6570 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑛𝑡𝑥) = ( 0 · 𝑥))
3938, 37eqeq12d 2625 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑛𝑡𝑥) = 𝑛 ↔ ( 0 · 𝑥) = 0 ))
4019, 20, 37oveq123d 6570 . . . . . . . . . . 11 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑛) = (𝑥 · 0 ))
4140, 37eqeq12d 2625 . . . . . . . . . 10 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑛) = 𝑛 ↔ (𝑥 · 0 ) = 0 ))
4239, 41anbi12d 743 . . . . . . . . 9 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛) ↔ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
4336, 42anbi12d 743 . . . . . . . 8 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4418, 43raleqbidv 3129 . . . . . . 7 ((((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4517, 44sbcied 3439 . . . . . 6 (((𝑏 = 𝐵𝑝 = + ) ∧ 𝑡 = · ) → ([ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4613, 45sbcied 3439 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → ([ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
476, 9, 46sbc2ie 3472 . . . 4 ([𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))
483, 47anbi12i 729 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
4948anbi2i 726 . 2 ((𝑅 ∈ CMnd ∧ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))))
50 fveq2 6103 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
5150eleq1d 2672 . . . 4 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd))
52 fveq2 6103 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5352, 4syl6eqr 2662 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54 fveq2 6103 . . . . . . 7 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
5554, 7syl6eqr 2662 . . . . . 6 (𝑟 = 𝑅 → (+g𝑟) = + )
56 fveq2 6103 . . . . . . . 8 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
5756, 10syl6eqr 2662 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = · )
58 fveq2 6103 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5958, 14syl6eqr 2662 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
6059sbceq1d 3407 . . . . . . 7 (𝑟 = 𝑅 → ([(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
6157, 60sbceqbid 3409 . . . . . 6 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
6255, 61sbceqbid 3409 . . . . 5 (𝑟 = 𝑅 → ([(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
6353, 62sbceqbid 3409 . . . 4 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))
6451, 63anbi12d 743 . . 3 (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))))
65 df-srg 18329 . . 3 SRing = {𝑟 ∈ CMnd ∣ ((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡][(0g𝑟) / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
6664, 65elrab2 3333 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]𝑥𝑏 (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))))
67 3anass 1035 . 2 ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))))
6849, 66, 673bitr4i 291 1 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  [wsbc 3402  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Mndcmnd 17117  CMndccmn 18016  mulGrpcmgp 18312  SRingcsrg 18328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-srg 18329
This theorem is referenced by:  srgcmn  18331  srgmgp  18333  srgi  18334  srgrz  18349  srglz  18350  ringsrg  18412  nn0srg  19635  rge0srg  19636
  Copyright terms: Public domain W3C validator